《学会学习和思考之环境科学》设计

按照Teach Less, Learn More课程体系的一般设计要求《学会学习和思考》的设计原则,我们做了《学会学习和思考科学和科学教育模块》的设计。

Meaningful Learning in a Systems Approach to Environmental Science: An Illustration of Learning How to Learn the Tools of Thinking

Concept Mapping and Vee Diagrams
 
Beijing Normal University, Oct. 10 – Oct. 21, 2016

Michael Brody PhD
Montana State University, College of Education, Health and Human Development
Bozeman, Montana USA

In this course students will use two meaningful teaching and learning techniques, concept mapping and Vee diagrams, to better understand a systems science approach in environmental science. Concept maps and Vee diagrams are explained in the book Learning How to Learn by Joseph Novak and D. Bob Gowin. (1984) We will use a website called the Habitable Planet: A Systems Approach to Environmental Science as the science content. This website was awarded the Science Prize for Online Science Resource in Education (SPORE) by the American Association for the Advancement of Science (AAAS). Each day the class will take a single chapter of the Habitable Planet and use concept mapping and Vee diagrams to analyze the content from a systems science approach. We will use Cmap software to build concept maps.

Meaningful Learning and Learning How to Learn: Concept Mapping and Vee Diagrams

Meaningful learning requires making connections among concepts and from concepts to experiences. When structured around core concepts, these connections lead to disciplinary expertise and insight.

Habits of mind characteristic of different disciplines develop in response to distinct challenges. As a result the structures of knowledge differ from one field to another. Concept mapping and Vee diagramming promise to bring such structures into focus, making learning efficient. (Concept maps are drawings that depict networks of relationships and hierarchy among concepts. Vee diagrams help the learner to represent the structure of knowledge in the context of a scientific inquiry.)

Habitable Planet: A Systems Approach to Environmental Science

https://www.learner.org/courses/envsci/

Earth is probably unique in the solar system, if not in the universe, because it is a platform that can support complex life forms. Conditions on Earth (temperatures, atmosphere, availability of minerals essential to life) are all maintained by a series of global cycles that link geological systems (plate tectonics, weathering, ocean, and atmospheric transport) with the diverse forms of life (particularly bacteria) that are present in almost every available niche.

The course begins by asking “What makes Earth unique among planets?” We will then go on to answer that question through the first four units, which provide a background for understanding and discussing the natural functioning of the different Earth systems: geophysical systems, the atmosphere, the oceans, and, finally, natural ecosystems. The next two units (“Human Population Dynamics” and “Risk, Exposure, and Health”) introduce humans as part of the overall ecosystem and look at what is needed to sustain human life. These are followed by a series of units that each deal with the effects of human actions on different natural systems: land use, air and water pollution, biodiversity decline, the extraction of resources, and finally, global issues such as climate change. The final unit looks toward the future and discusses in scientific terms what can be predicted, given current trends, as well as what might be expected if humans act in concert to mitigate their impact on the planetary system.

Accompanying each unit are video case studies that describe current, on-going research programs. Together, these case studies represent a fair cross section of the current “state of the art” in environmental science research. Designed to provoke curiosity and give a human face to many of the issues raised in the units, these videos will motivate and stimulate students to explore the themes through further readings and discussion.

Five interactive web simulations also reinforce the concepts we introduce, as well as teach about modeling environmental systems by providing opportunities to manipulate and experiment with natural systems.

Systems Thinking

The list of systems thinking skills is extensive and diverse, but mostly comprises the ability to see circular cause effect relations and the ability to synthesize elements to reveal a system’s structure. Specific systems thinking skills include: the ability to understand how the behavior of a system arises from the interaction of its agents over time (i.e. dynamic complexity); discover and represent feedback processes (both positive and negative) hypothesized to underlie observed patterns of system behavior; identify stock and flow relationships; recognize delays and understand their impact; identify nonlinearities; recognize and challenge the boundaries of mental (and formal) models. A number of evaluative testing studies have attempted to link systems thinking/system dynamics education with important skills such as efficient communication, planning, problem solving, and organizational development skills. (Molina and Medina-Borja 2006)

Expected Course Outcomes

Students will have a better understanding of:

  • Concepts
    1. Learning how to learn and meaningful learning
    2. a systems approach to environmental science content
    3. how scientists conduct field and laboratory investigations in environmental science
    4. attitudes, values and beliefs related to environmental science content
  • Skills
    1. how to use concept mapping to organize content and think deeper and clearly about environmental science
    2. learning by doing; discussion and critical feedback
    3. develop relational and critical thinking skills
    4. how to use the Vee diagram to analyze scientific investigations in environmental science
    5. how concept maps and Vee diagrams promote meaningful learning
    6. teaching concept mapping and Vee diagraming to your students
  • Dispositions
    1. the value of concept mapping in learning how to learn
    2. the value of Vee diagrams in learning how to learn
    3. the value of a systems approach to environmental science
    4. importance of meaningful learning in environmental science
    5. value of higher order learning (application, analysis, synthesis, evaluation) in learning environmental science systems approach
    6. value of concept mapping and Vee diagrams in teaching for meaningful learning

Course Structure

  1. Students are expected to decide environmental science topics of their own choice and work in small groups
  2. Each class will focus on a section of the Habitable Planet; concept mapping the text and Vee diagraming the Scientific Investigations of each video
  3. There will be some small leactures but most of the class time will be about doing concept mapping of the environmental science content and Vee diagraming the research associated with each topic.
  4. Students in this class will prepare a concept map of a selected environmental science topic and present the map to the class
  5. Students will construct a Vee diagram of a unique research project related to the environmental science topic in their concept map
  6. The grade for the course is based on module reflections including both modules (50%), the final concept map of your unique environmental science topic (25%) and unique Vee diagram (25%)

《学会学习和思考之教育和教育研究》设计

按照Teach Less, Learn More课程体系的一般设计要求《学会学习和思考》的设计原则,我们做了《教育和教育研究》的设计。

Effective Use of Concept Maps for Teaching, Learning, and Research
Dr. Simone C. O. Conceição, Professor, University of Wisconsin-Milwaukee

Simone_Course

This module will introduce you to effective strategies for using concept maps for teaching, learning, and research. At the end of this module, you will will be able to use concept maps as an approach for teaching and learning in different disciplines; create a blueprint incorporating concept map as a learning strategy; identify ways for using concept maps as a research tool for data collection, analysis, and presentation; and develop a plan for using concept maps for conducting research.

This module will involve presentation of concepts and theories via lecture, group discussion, and individual and group practice using IHMC CmapTools Software.

This module will be taught in English. You will be expected to complete assignments in English.

It is expected that you will have some knowledge of the use of concept maps and skills on how to use IHMC CmapTools Software. Also, you will be expected to complete readings before attending sessions.

Module Outline

Simone_Course2

Day One

Introductions, Getting to Know Participants, Needs assessment, Scavenger Hunt, Pedagogical and Theoretical Approaches for Using Concept Maps, Types of Concept Maps, Learning strategies using concept maps

DAY Two

Learning strategies using concept maps in different disciplines

DAY Three

Teaching strategies using concept maps in different disciplines: activities

DAY Four

Teaching strategies using concept maps in different disciplines: assessments

DAY Five

Research strategies using concept maps: data collection and analysis

DAY Six
Research strategies using concept maps: data presentation

Learning Assessment
Students will be graded based on participation in course activities, course blueprint, module reflections, and final presentation.

References

Burke, J. G., O’Campo, P., Peak, G. L., Gielen, A. C., McDonnell, K. A., & Trochim, W. M. (2005). An introduction to concept mapping as a participatory public health research method. Qualitative Health Research, 15(10), 1392-1410.
Butler-Kisber, L., & Poldma, T. (2010). The Power of Visual Approaches in Qualitative Inquiry: The Use of Collage Making and Concept Mapping in Experiential Research. Journal of Research Practice, 6(2). Retrieved from http://jrp.icaap.org/index.php/jrp/article/view/197/196
Campbell, R., & Salem, D. A. (1999). Concept Mapping as a Feminist Research Method Examining the Community Response to Rape. Psychology of Women Quarterly, 23(1), 65-89.
Cañas, A. J., & Novak, J. D. (2006). Using concept maps to organize information for large-scale literature reviews and technical reports: two case studies.
Conceição, S. C. O., & Taylor, L. D. (2007). Using a constructivist approach with online concept maps: Relationship between theory and nursing education. Nursing Education Perspectives, 28(5), 268-75. National League for Nursing.
Conceição, S. C. O, Baldor, M. J. & Desnoyers, C. A. (2009). Factors influencing individual construction of knowledge in an online community of learning and inquiry using concept maps. In R. Marriott & P. Torres (Eds.) Handbook of Research on Collaborative Learning using Concept Mapping, 100-119. IGI Global.
Daley, B. J., Canas, A. J., & Stark, T. (2007). CmapTools: Integrating teaching, learning, and evaluation in online modules. New Directions for Adult and Continuing Education, 2007, 113, 37-47.
Daley, B. J., Conceição, S. C. O., Mina, L., Altman, B., Baldor, M.J., & Brown, J. (2010). Concept mapping: A strategy to support the development of practice, research, and theory within human resource development. Human Resource Development Review, XX(X), 1-28.
Hay, D. B. & Kinchin, E. M. (2006). Using concept maps to reveal conceptual typologies. Education & Training, 48 (2/3), 127-142.
Jackson, K. M., & Trochim, W. M. (2002). Concept mapping as an alternative approach for the analysis of open-ended survey responses. Organizational Research Methods, 5(4), 307-336.
Kinchin, I. M., Streatfield, D., & Hay, D. B. (2010). Using Concept Mapping to Enhance the Research Interview. International Journal of Qualitative Methods, 9(1).
Meagher-Stewart, D., Solberg, S. M., Warner, G., MacDonald, J., McPherson, C., & Seaman, P. (2012). Understanding the Role of Communities of Practice in Evidence-Informed Decision Making in Public Health. Qualitative Health Research, 20(10),1-17.
Morrison, D. (2006). Critical Thinking in a Collaborative Online Learning Environment. Advanced Technology for Learning, 3(4), 255-262.
Richardson, R. (2007). Using concept maps as a tool for cross-language relevance determination. (Order No. 3288675, Virginia Polytechnic Institute and State University). ProQuest Dissertations and Theses, 196. Retrieved from https://ezproxy.lib.uwm.edu/login?url=http://search.proquest.com/docview/304792723?accountid=15078. (304792723).
Trochim, W. K. Concept Mapping, available at http://www.socialresearchmethods.net/kb/conmap.htm
Trochim, W., & Kane, M. (2005). Concept mapping: an introduction to structured conceptualization in health care. International Journal for Quality in Health Care, 17(3), 187-191.
Wheeldon, J., & Faubert, J. (2009). Framing Experience: Concept Maps, Mind Maps, and Data Collection in Qualitative Research. International Journal of Qualitative Methods, 8(3).
Wheeldon, J. (2010). Mapping mixed methods research: Methods, measures, and meaning. Journal of Mixed Methods Research, 4(2), 87-102.
Wheeldon, J. (2011). Is a Picture Worth a Thousand Words? Using Mind Maps to Facilitate Participant Recall in Qualitative Research. Qualitative Report, 16(2), 509-522.

《学会学习和思考》课程设计原则

学会学习和思考的设计原则

TLLMDesigningPrinciple

本课程的最终目标是帮助学生学会如何学习,学会如何思考,尤其是批判性的系联性的独立的思考。

我们相信“做中学”,于是当人们要学会如何学习的时候,必须真的学点东西,学点不是那么简单的东西。因此,在这门课程中我们企图传授两样东西:(1)关于理解型学习的思想和技术,(2)学习专业领域的知识(例如物理学、化学、生命科学、地球科学、语言学、语言、经济学、社会研究、教学学、教育研究)。

大量的描述性的知识对学生来说常常是影响学生创造性和批判性思考的障碍,尽管同时,知识也是创造和批判的基础,并提供了创造性思考的方向。那么,面对着对矛盾,我们怎么办?我们相信,知识一旦被深刻地和真正地理解了,通常表现为看到更多的联系,就会更多地成为创造的助推剂而不完全是障碍。

这门课程的另外一个设计理念是我们相信学习的目的是为了获得理解,获得对一门学科的大图景的理解以及对这们学科的热爱,而不是为了获得更多的或者完整的知识。因此,本课程的具体学科模块中所选择用来学习讨论的内容通常是这个学科的基本思想,基本问题、典型思考方式和典型分析方法。我们会尽量避免传授给你太多的描述性知识,而是主要关注最核心的有助于学生理解本学科大图景的知识。

我们同时还相信“教的少,学得多”的教学理念。因此,我们把大部分学习任务都留给了学生,老师通常是教练、导师的角色,来引导和帮助学生。

我们还相信,学生在面对挑战的时候成长的最快。因此,在所有的专业领域的模块里面,我们会有课后作业和阅读材料。它们可能来自于书籍、论文,而这些材料需要学生自己来寻找和阅读。有的时候,这些作业可能会作为课程项目,这样的问题可能本身就一个开放的问题,或者是一个非平庸的研究课题。我们希望学生能够理解相应的领域的科学家的思考方式。有的时候这些作业需要你去探索几种不同的解法。这样的探索有助于提高创造性。

部分课程包含问题解决模块。在那里学生的求解问题的能力会得到提高。这个时候学生可能独立完成也可能通过学习小组来完成。我们鼓励问题的原创的或者是创造性的答案。这样的答案在本课程中会被高度评价。解决问题的能力也是一个适宜用做中学的方式来提高的重要技能。

这门课程从结构上由多个18学时的模块构成。其中一个模块是关于理念和技巧的训练,在那里学生学习到理解型学习的思想以及概念地图制作的技术。在这里,所用的例子会比较贴近学生的日常生活,但是也是需要学生投入比较深入的思考的非平庸的问题。在课程实践中,我们也会逐渐积累这样的例子,以供更多的人来做类似的培训模块的时候使用。

本课程也会包含一定数量的基于领域知识的模块,例如关于物理学、化学、生命科学、地球科学、语言学、语言、经济学和社会研究的模块。理想情况下,这些模块的主讲人都是相应领域的专家,热爱这个领域,能够把核心内容从这个学科里面抽取出来,并且善于和学生们分享这些核心内容、核心内容的结构,以及对这们学科的热爱。

实际上,我们的理念是,任何课程都应该重新梳理一下,按照“教的少,学得多”的原则,仅保留能够呈现学科大图景的核心知识结构,而不仅仅是我们这一门课程。这是一个任重道远的任务和目标。

教给学生核心内容,帮助学生理解和思考,深入地、批判性地、创造性地、独立地思考,把其它学习任务都交给学生。

最后这门课程课定不是一门容易的课程。学生们需要完成技能训练模块和至少一个专业领域模块。期间,学生们需要完成大量的阅读、作业、课堂和课后的概念地图制作、与老师和同学之间的大量的课堂讨论,以及课程项目,还有课程项目口头报告。基于之前的课程的经验,我们估计,在这个四周的课程内,学生们大约需要花60小时的课内时间和40小时的课后时间。

在这们课程之后,我们希望,学生们可以获得:一些理解型学习的思想和技能、一个独立地创造性地批判性地思考的习惯、一个感兴趣的学科的大图景、一份对这个学科的热爱,以及一些长着类似的脑袋的朋友们。

我们鼓励你来选择这门课程,但是,小心,请多考虑一下。那些冲着学分而不是理念和技能来的学生,请不要选择这个课程。否则,在这个课程里面,你会非常难受。

对学生的要求:知识上,各个模块有具体要求,一般来说,要求各个专业的本科一年级以上水平。时间上,需要能够有上面提到的100小时的时间。最重要的是,在态度上,希望超越记忆型学习。

参考文献:
1. Whitehead(怀特海)《教育的目的》
2.Novak(诺瓦克)《学习、创造与使用知识——概念图促进企业和学校的学习变革》
3. 吴金闪《概念地图教学和学习方法》

Designing principles of Learning How to Learn and Think

TLLMDesigningPrincipleE

The ultimate objectives of this course are to help students learn how to learn and learn how to think, critically, independently and in terms of relations.

We believe in “Learning by Doing” and that when learning how to learn , one has to learn something, something nontrivial. Therefore, we propose to offer in this course two elements: (1) ideas and skills of meaningful learning and (2) learning domain-specific subject matters (such as physics, chemistry, life science, earth science, environmental science, linguistics, language, economics and social studies, pedagogy, education research).

Excessive descriptive knowledge of scientific concepts may become an obstacle that constrains students’ creative and critical thinking; however, meanwhile knowledge does serve as a foundation and sense of directions for creativity. So how to deal with these conflicting roles of knowledge? We believe that knowledge when understood deeply and truly, which often means seeing more connections, is less an obstacle and more a booster for creativity.

Another principle behind this course design is that we believe the goal of learning is not to gain as much knowledge as possible, but to gain an understanding of the underlying structure of a discipline, especially an understanding of the big picture and a deep love of the discipline. So the subject modules are selected topics in the field to present the basic ideas, basic questions, typical ways of thinking and basic approaches of analysis of the field. We intend to avoid excessive descriptive knowledge, but to focus instead on the conceptual core that helps students to grasp the big picture.

We also believe in the principle of “Teach Less, Learn More”. Thus we leave most of the learning to students, while instructors play the role of mentors or coaches, who guide and help students.

We also believe that students grow faster when facing challenges. Thus, in all subject matter modules there will be reading materials and homework questions coming from books and research papers which students will have to discover and read on their own. Some of those questions will be in the form of course projects, which may come from open questions in the field and may be highly non-trivial. We want students to understand how experts of the fields think and to become acquainted with their habits of mind. Some homework questions are designed in a way such that various solutions can be found. We encourage students to come up with innovative solutions. We believe that tackling homework questions creatively helps to foster creativity in real world problem solving.

Part of the course will have problem-solving sessions to improve students’ problem solving skills. For this reason, students will work in cooperative groups and alone, on the representation, analysis of the problem and on reducing complexity. Original and creative solutions will be encouraged. Creative solutions will have high value in the course. The ability to solve problems is an important skill learned by doing.

The overall course structure will be composed of several 18-hour modules: One module will focus on ideas and skills training, where the idea of meaningful learning and the technique of concept mapping will be introduced to students. Here examples should be close to students’ everyday life but still non-trivial, i.e. requiring some deep thinking to understand the topics. We should gradually collect those examples to form a toolbox for others to run this kind of training sessions to general audiences.

A number of additional modules will focus on domain-specific subject matter, such as physics, chemistry, life science, earth science, linguistics, language, economics and social studies. Ideally, instructors of those modules should be experts in the corresponding disciplines, who love the disciplines, know how to extract the core knowledge structure out of the disciplines and also are capable of sharing their feelings and the structures to the students.

In fact, we believe that all courses should be reconstructed to keep only the core parts of the knowledge structures sufficient to present the big picture of the disciplines. This principle of “Teach Less, Learn More” should be implemented not only in this course of Learning How to Learn and Think, but also to many other subject matter courses.

Teach students only the core parts, help the students understand them well and think independently, deeply, creatively and critically, and leave all other learnings to the students.

Finally, this is not an easy course. Student are expected to take the training module and at least one domain-specific module, to do a lot of reading, assignments, concept mapping activity in and after classes, and in-class discussion with instructors and among peer students. Students are also required to do course projects and present the project reports in classes. We estimate according to previous classes that on average students spend 60 in-class hours and 30 after-classes hours in the four weeks.

After this course, hopefully, students will acquire some ideas and skills on meaningful learning, a habit of thinking creatively, critically and independently, a big picture of the field of interest, deep love to the field of interest and some friends with alike minds.

We encourage you to choose this course, but with caution. Those, who are aiming for credits rather than the ideas and skills, please do not choose this course. Otherwise, you will suffer the whole course miserably.

Prerequisite: Knowledge wise, every module has its own requirement, but generally, it should be sufficient if students have the knowledge corresponding to the first year of university education of the discipline. Time wise, it is expected that students will be able to devote the 90 hours mentioned above. Attitude wise, which is most important, it is necessary that students have already the eager to go beyond rote learning.

References:
1. Alfred North Whitehead, Aims of Education
2.Joseph D. Novak, Learning, Creating, and Using Knowledge: Concept Maps as Facilitative Tools in Schools and Corporations
3. Jinshan Wu, Teach Less, Learn More

附件:
2017年秋季《学会学习和思考》开课信息(2017 Fall course format, time, places)
“教的更少,学得更多”课程的设计要求(Structures of a TLLM course design)
《学会学习和思考之理解型学习理念和技能》设计(Course design of LHLT ideas and skills of meaningful learning)
《学会学习和思考之物理学》设计(Course design of LHLT physics module)
《学会学习和思考之教育学》设计(Course design of LHLT education module)
《学会学习和思考之科学和科学教育》设计(Course design of LHLT science and science education research module)
《学会学习和思考之教育和教育研究》设计(Course design of LHLT education and education research module)
《学会学习和思考之地球科学》设计(Course design of LHLT geology module)
《学会学习和思考之环境科学》设计(Course design of LHLT environmental science module)

《学会学习和思考之化学》设计(Course design of LHLT chemistry module)
《学会学习和思考之生命科学》设计(Course design of LHLT life science module)

“Teach Less, Learn More”课程设计举例:量子力学(Course design of Quantum Mechanics)

“Teach Less, Learn More”课程设计举例:系统科学导引(Course design of Invitation to System Science)

理解型学习用于题海战术

退括号的机械式学习和理解型学习提到有一些规则是要依靠做题的熟练和记住的。这是典型的机械式学习。其中,我们也提到,就算是这样的规则的学习,学习的方式也主要就是重复,我们也可以让理解型学习发挥作用:用来明白这些规则为什么是这样的,也就是大概形成对这些规则的一定程度的理解,然后再来通过题海战术达到记住和熟练。

但是,今天,我发现,这个还不够,理解型学习,还可以用在计算的过程中。这样才能真的做到事半功倍,通过做少量的题来达到熟练和记住的目的。怎么发挥作用?在计算的任何一个步骤过程中,思考,这一步是按照什么原理或者规则来做的,也就是追问“每一步算出来的结果是什么”和“为什么能够和需要这样计算”的问题。

例如这样的一道面积计算题:一个大长方形里面挖掉一个小长方形,求剩下的部分的面积。挖掉的长方形长度是56cm,宽未知。大长方形的宽为44cm,长未知。剩下的部分的就是一个L形长条,其长条宽度为13cm。recta

如果用大长方形减去小长方形(这一步思考我认为是这个问题最关键的,但是…),则
\begin{align}
\left(56+13\right)\times 44 – 56\times\left(44-13\right)
\end{align}
我家心儿是列出来的算式是这样的
\begin{align}
\left(56+13\right)\times 44 \times 56\times\left(44-13\right)
\end{align}
问第一个括号里面是什么,明白是大的长度,最后的那个括号是什么,明白是小的宽度。问,第一个乘积符号是什么意思?算面积?问最后那个乘积符号是什么意思?算面积。问中间那个乘积符号是什么意思?面积乘以面积是什么?不知道,意识到把周长和面积搞混了。还不是简单地搞混,各自是清楚地,不知道为什么放在一起就能搞糊涂。不过这个不是重点,重点是,通过问每一步计算出来的是什么,就可以自己找到问题,并解决。

也可以把剩下的形状拆成两个长方形(或者等价地,这一步思考我认为是这个问题最关键的,但是…),
\begin{align}
13\times\left(56+13\right)+\left(44-13\right)\times 13
\end{align}

接着就可以开始做计算了,计算部分纯粹就是规则的运用,我以为没什么。但是,你看,心儿会这样算(在这个问题中到还真的没有错,算对了。我实际上是把下一个问题中心儿犯的错移到了这里。道理上是一模一样的),
\begin{align}
13\times\left(56+13\right)= 13\times 56 \times 13
\end{align}
或者
\begin{align}
13\times\left(56+13\right)=13\times 56\times 13\times 13
\end{align}
看起来好像就是分配律记错了,改了就完了。实际上,当然也是,但是不仅仅是这样。分配律错了仅仅是表现,根本问题在于没有仔细问每一步为什么这样算。为什么这样说?首先,心儿算过不少尽管也不多分配律的问题,确实都算对了。其次,看得出来,她心里不太愿意算或者什么原因,就想着完成这道题了。我演示了这样的一个计算。
\begin{align}
13\times\left(56+13\right)+\left(44-13\right)\times 13 \\
=13\times 56 + 13\times 13+44\times 13 -13 \times 13 (乘法对加法的分配律) \\
=13\times 56 +44\times 13 + 13\times 13 -13 \times 13 (加法交换律) \\
=\left(13\times 56 +44\times 13\right) + \left(13\times 13 -13 \times 13\right) (加减法结合律) \\
=\left(13\times 56 +44\times 13\right) (算出来最后的减法) \\
=\left(56\times 13 +44\times 13\right) (乘法交换律) \\
=\left(56+44\right)\times 13 (乘法对加法的分配律) \\
=100\times 13 (算出来加法) \\
=1300 (算出来乘法)
\end{align}
也就是在每一步的等式的后面标注等式成立的理由是什么。
然后,问,你的计算的每一步的理由是什么,心儿就能够自己找出来问题在哪里了。

通过这个例子,我想告诉大家,就算在熟练和记住规则这样的几乎完全就是机械式学习的任务上,理解型学习也是可以发挥作用的。其发挥作用的方式就是在计算的每一步问:“算出来的是什么”,“为什么能够和需要这样来计算”。更一般地来说,语文数学英语都一样,其实什么都一样,不过就是多问几个问题,问是什么,问为什么,问WHWM

当然,我再一次强调,理解型学习的真正威力不在这里,而在于使用概念地图帮助理解型学习的四个层次

又多了一道题的例子:小林和小文各自有200元钱。小军从每人那里借了25.5元。这时候三个人的钱一样多。问小军原来多少钱?

心儿列出来算式是这样的\(\left(200-25.5\right)-2\times 25.2\)。这个很对。但是,我接着问:\(\left(200-25.5\right)\)是什么?答小林和小文的钱。问他们什么时候的钱?答借走以后剩下的钱。问\(2\times 25.2\)是什么?小军借到的钱。\(\left(200-25.5\right)-2\times 25.2\)合起来是什么?小军原来的钱。为什么?小林和小文的剩下的钱减去小军借到的钱,为什么会是小军原来的钱?不知道。可见,还是没有学会思考“是什么”、“为什么”,至少没有学会主动去问这些问题。中间最关键的一步就是由于“这时候三个人的钱一样多”,因此,从数值上,\(\left(200-25.5\right)\)也是小军最后的总钱数。于是,才有小军的总钱数减去小军借到的钱,等于小军自己原来的钱的数目。

在这里例子里面,每一步计算出来的是什么,分别是“小林和小文的剩下的钱(同时也就是小军最后的总钱数)”、“小军借到的钱”还有“小军原来的钱数”。为什么需要这样算,是因为需要计算的是“小军”的原来的钱,已知的是“小军”借到的钱,因此,前面也必须是“小军”的钱。为什么能够这样算,是因为“这时候三个人的钱一样多”,数量上小林和小文的剩下的钱等于小军最后的钱。希望通过这个例子能够更好地学会问是什么为什么,更好地做严密的思考,每一步都有理由的思考,于是达到事半功倍。

顺便,心儿,错了不要紧,关键是要从错的地方学到东西,而且有的时候要追问更深层次的原因在哪里,而不满足于算错了,看错了,也不满足于改过来了。例如,在这里,学会了问“算出来的是什么”,“为什么能够和需要这样来计算”之后,就能够自己发现错误,自己改正,自己提高了。这样做提道题的效果就相当于不思考是什么和为什么的时候的算100道题的效果。

阅读理解题:这个帖子主要说了什么信息(What),用什么例子采用什么逻辑怎么来(How)说明的这个信息,为什么(Why)作者要说这个以及用这样的例子和逻辑来说,你读了以后有什么感想和思考对你意味着(Meaningful)什么。

使用概念地图帮助理解型学习的四个层次

概念地图以及背后的系联性思考、批判性思维是理解型学习的基础,而理解型学习有助于把问题真的搞清楚搞明白并且通过考察事物之间的联系来帮助提出新问题、找到新方法或者发展新应用。按照理解型学习的层次,我把在概念地图的使用分成以下四个层次。

第一、知识高速公路基础架构。把人类知识的主干概念和概念之间的联系找出来,整理成为一个知识结构大框架。注意,这样的框架不是概念的罗列,也不是概念之间关系的罗列,而是一个概念和概念之间的联系构成的有结构的网络。这个网络整体来说,要具有层次结构(大概念到小概念),要有超越层次结构的长程连接,还要有对概念以及概念之间的联系的重要性度量。这个重要性可以内生的来自于这个网络本身,也可以来自于对学科对认识世界等其他方面的考虑。例如,简单粗暴地,可以用概念和关系连词出现的频率来度量重要性。当然,将来的目标是当包含走够大的知识系统之后,这样外生重要性都会成为内生重要性。

第二、课程和课程体系的设计。在这个知识高速公路体系的基础上,或者局部的学科和课程的概念地图的基础上,我们就可以实现针对课程和专业大图景的课程设计。所谓大图景,就是这个专业的典型研究对象、典型思维方式、典型分析方法、典型应用或者其他和世界以及其他学科的联系。大多数时候,具体的知识都会在课程结束以后很短的时间被忘记,但是大图景这样的东西,是进入思维,伴随一辈子的。当然,没有具体知识和具体例子,学生不可能领会到这个大图景。只是,学习的目标不能直接就是那些具体的知识和规则,例如学会怎么算乘法算微分算积分。我们需要围绕着习得学科大图景的目标来选择教什么学什么

第三,在具体教学、读书(获取信息)、写作(表达信息)的环节,要鼓励深入思考,思考联系,思考为什么,思考WHWM问题。也就是What(主要信息是什么),How(怎么来表达和构建这个主要信息的),Why(为什么这样构建,为什么表达这个信息),Meaningful(对于读者来着,意味着什么)。在思考这些为什么的时候,还需要主要围绕着学科大图景来思考。也就是回答“我为什么选择这个例子来教学或者学习”,“我想通过这个例子来体现什么大图景,为什么能够体现”等等这样的问题。

第四,在作业、诊断和考试阶段,借助概念地图的形式,或者直接通过让学生来制作概念地图,来促进学生的理解型学习。例如,在考试的时候,可以想办法运用概念之间的联系来做到“考的少,考察得多”(让学生通过做更少的题来了解学生的学习状态知识掌握程度)。例如,在诊断的时候,可以通过学生制作的概念地图更加准确地把握学生的在理解上的问题,是某个概念不知道,还是对于这个概念和其他概念之间的关系理解不到位,还是更上层的概念的理解有问题。

关于整体的设想和我们做的事情,可以看我的书《概念地图教学和学习方法》。我们也在北京师范大学《学会学习和思考》课程上做实践上的探索。

第一个阶段的实施,我自己是做不完的。不过已经开始在数学物理等方面实施。另外,联系到Wikipedia已有的知识库,以及Wikipedia的成长本身,这件事情还是有希望的。

第二第三的例子可以看《概念地图教学和学习方法》,以及在这个博客上检索“理解型学习”来看到其他的帖子,例如高中物理基于“大图景”的教学体系

第四个方面比较细节,还没有仔细整理,但是其中一些标注“理解型学习”的帖子也有例子,例如,鸡兔同笼问题的理解型学习,并讨论方程和构造解法的关系“四舍五入”的机械式学习和理解型学习理解型学习用于题海战术退括号的机械式学习和理解型学习

其实,我们关于汉字学习和诊断的工作,也可以看做是一个汉字的理解型学习体系。实际上,这个工作是我们真的实际开始做这个概念地图和理解型学习的起点。汉字学习的文章可以在这里找到。这里还有BBC对我们这个工作的评论。还听说在实际教学中发挥了点作用。做的东西能够对其他人有用是好玩的事情。

今年的亚太地区概念地图(中文会议网站Conference site in English)会议上,我会报告一下这四个层次,结合我们在《学会学习和思考》课程的实践。

多多努力,争取以此改变教学和学习,让孩子们避免背一张又一张的乘法表,开始思考这到底在干什么,开始表达我喜欢吗。