广义投入产出分析的几个基本问题

第一、传统产出端的分析:如果我们知道下一阶段的新增(或者新降低)的产出向量(由每一个产品或者每一个部门的产量构成)$$\Delta Y^{F}$$,如何求得整个系统总产出向量的变化$$\Delta X^{F}$$?(在这里隐含了假设,原材料投入是无穷的,需要多少有多少)

第二、传统投入端分析:如果我们知道下一阶段的新增(或者新降低)的投入向量(由每一个产品或者每一个部门的接受投入量构成)$$\Delta Y^{B}$$,如何求得整个系统总投入向量的变化$$\Delta X^{B}$$?(在这里隐含了假设,需求是无穷的,生产多少就能有多少进入市场并产生效益)

第三、如何度量部门$$j$$的总影响力:去掉这个部门之后总产出向量或者总投入向量的变化?

第四、部门$$j$$对部门$$k$$的影响力如何度量?

第五、增加投入对产出的影响:仅仅增加部门$$j$$的投入,或者增加一个初始的固定的(可以浪费留着不能突破限制)投入向量,总产出向量如何变化?(在这里原材料投入不再是无穷的。可能需要区分固定配比的生产模式与模糊的生产模式。前者就像化学反应,后者是目前的部门层次的投入产出表)

第六、减少投入对产出的影响:仅仅减少部门$$j$$的投入,或者减少一个初始的固定的(至少减少这么多,可以减少的更多)投入向量,总产出向量如何变化?

第七、增加产出对投入的影响:仅仅增加部门$$j$$的产出(假设需求增加了),或者增加一个固定的(可以增加更多,不能不满足)产出向量,总投入向量如何变化?

第八、减少产出对投入的影响:仅仅减少部门$$j$$的产出,或者减少一个固定的(至少减少这么多,可以减少的更多)产出向量,总投入向量如何变化?

一、二,原始的投入产出分析已经能够回答。三、四,投入产出领域后来发展的HEM能够回答。剩下的问题,传统投入产出分析是否已经回答,还有待进一步了解。

我们新发展的投入产出分析已经能够回答三、四,目前看起来基本能够回答五、六、七、八,是否能够回答一、二尚待研究。

关于开放系统与封闭系统:自然界(原材料)加上人类(劳动力)构成生产系统的投入端,人类(消费)加上自然界(垃圾)构成生产系统的输出端。在开放系统的视角下,自然界与人类的本身的动力学(例如垃圾的自然处理,循环系统,人类本身的生产)不考虑在内,因此,自然界和人类都是这个生产系统的外界。在封闭系统的视角下,把自然界和人类的动力过程内生化,于是整体构成了一个大的生产系统。原则上两种视角是等价的。但是考虑到实际数据和特征时间尺度的问题,往往两种视角取其一。

投入产出矩阵分析的主要思想小结

Leontief的投入产出分析考虑了一个封闭(如果把最终消费和劳动力投入对应着的部门看成外生的,则这个系统是开放的)的多部门经济系统之间的投入关系,然后选择对某一个部门或者产品(通常是居民,或者说最终消费品,原则上可以任意选取)的投入做一个直接与间接影响分析:假设期望这个部门(例如居民)的消费部门中的某部门有一个增量,则所有部门应该如何变化;假设这个部门(例如居民)对某部门的投入有所增加,则所有部门会如何变化。

Define (x^{i}{j}) to be the quantity of product i in terms of a product unit from product i to product j, in short, (X^{From}{To}).
[\left[\begin{array}{cccc}x^{1}{1}& \cdots & x^{1}{N-1} & x^{1}{N}=y^{1} \ &\cdots&&\x^{N-1}{1}& \cdots & x^{N-1}{N-1} & x^{N-1}{N}=y^{N-1} \x^{N}{1}=y{1}& \cdots & x^{N}{N-1}=y{N-1} & x^{N}{N}=y^{N}=y{N} \end{array}\right] \hspace{2cm} (1)]
represents the full relation among all products in an economy.

Let us define also unit mass of every product, (M^{i}), and price of one product unit is (P^{i}).
[\hat{x}^{i}{j}=M^{i}x^{i}{j} \hspace{1cm} \mbox{ and } \hspace{1cm} \tilde{x}^{i}{j}=P^{i}x^{i}{j} \hspace{2cm} (2)]
One thing should be emphasized that whenever there is intellectual input/output, assuming it is the product (N), there is no well defined (M^{N}) for that and there is not even a good quantity (x^{N}_{j}) for that. We will keep this issue in our mind and just proceed from here anyway. If one is interested in price of a product per unit mass, then it can be calculated easily that (p^{i}=P^{i}/M^{i}) .

For convenience, we also define total output from product (i) and total input to product (i), [X^{i}=\sum_{j}x^{i}{j}\ \mbox{ , } X{i}=\frac{1}{M^{i}}\sum_{j}M^{j}x^{j}{i} \mbox{ and } X{i}=\frac{1}{P^{i}}\sum_{j}P^{j}x^{j}_{i}. \hspace{2cm} (3)]

For economics, since all products including populations and import/export, for every product the total input to that product equals to the total output from that product: (X^{i}=X_{i}), from which we have
[\sum_{j=1}^{N} M^{i}x^{i}{j} = \sum{j=1}^{N} \hat{x}^{i}{j} = \sum{j=1}^{N} \hat{x}^{j}{i} = \sum{j=1}^{N} M^{j}x^{j}{i}, \hspace{2cm} (4-1)]
[\sum
{j=1}^{N} P^{i}x^{i}{j} = \sum{j=1}^{N} \tilde{x}^{i}{j} = \sum{j=1}^{N} \tilde{x}^{j}{i} = \sum{j=1}^{N} P^{j}x^{j}_{i}. \hspace{2cm} (4-2)]

However, there are other systems, where (X^{i}\neq X_{i}) in for example, flow of ideas and creativity and flow of happiness.

Now let us assume that we are focusing on the (N)th product (Because that (P^{N}) and (M^{N}) are not well defined, or because that we want to study impact of sector (N)), ie. we want to separate (x^{N}{j}) and (x^{j}{N}) from other (x^{i}{j}). Let us even give them a different name (y^{i}=x^{i}{N}) and (y_{i}=x_{i}^{N}). Those two are different.

Using those (y^{i}) and (X^{i}) we can write the output relation as,
[\sum_{j=1}^{N-1} x^{i}{j} + y^{i} = X^{i}, \forall i \neq N. \hspace{2cm} (5)]
Define (B^{i}
{j}=\frac{x^{i}{j}}{X^{j}}) as the required product (i) in its own unit for producing one unit of product (j), then
[\sum
{j=1}^{N-1} B^{i}{j}X^{j} + y^{i} = X^{i}, \forall i \neq N, \hspace{2cm} (6)] which can be written as
[BX+Y=X. \hspace{2cm} (7)]
If there is an expected (\Delta Y), after assuming all the coefficients are not changed (which implies that techniques and organization of production are the same), then
[\Delta X=(I-B)^{-1}\Delta Y = \sum
{n=0}^{\infty} B^{n}\Delta Y, \hspace{2cm} (8)]
which has a very intuitive explanation as direct and indirect effect of (\Delta Y): (B \Delta Y) is the direct input and (BB\Delta Y) is an induced input and in principle induced input at all orders should be considered.

Let us now turn to consider input relation. One might guess that we should have
[\sum_{j=1}^{N-1}x^{j}{i} + y{i} = X_{i}, ] which is however not valid since (x^{j}{i}) and (x^{k}{i}) do not share a common unit. Therefore, we have to consider the input relation in terms of materials and money, thus
[\sum_{j=1}^{N-1} M^{j}x^{j}{i} + M^{N}y{i} = M^{i}X_{i}, \forall i \neq N, \hspace{2cm} (9-1)]
[\sum_{j=1}^{N-1} P^{j}x^{j}{i} + P^{N}y{i} = P^{i}X_{i}, \forall i \neq N. \hspace{2cm} (9-2)]
Define (F^{j}{i}=\frac{x^{j}{i}}{X^{j}}) as the input to product (i) from per unit of product (j), then Equ(9-2) becomes
[\sum_{j=1}^{N-1} F^{j}{i}P^{j}X^{j} + P^{N}y{i} = P^{i}X_{i}, \forall i \neq N, \hspace{2cm} (10)] which, under the condition of (X^{j}=X_{j}), leads to
[F^{T}\left(P.X\right)+\left(P^{N}Y\right)=\left(P.X\right), \hspace{2cm} (11) ] which in turn leads to [\Delta P.X=(I-F^{T})^{-1}\Delta P^{N}Y = \sum_{n=0}^{\infty} \left(F^{T}\right)^{n}\Delta P^{N}Y, \hspace{2cm} (12)] where (P.X) is the element-wise dot product between two column vectors (inner product is denoted as (P\cdot X) or (P^{T}X)).

Equ(8) and Equ(12) have different meanings: Equ(12) answers the question that given (\Delta y_{i}= \Delta x^{N}{i}), the input from product (N) to product (i), what will be the effect after such an initial momentum on other products, while Equ(8) is about that in order to reach an increase of (\Delta y^{i}= \Delta x{N}^{i}), additional input from product (i) to product (N), how much other products will end up with. Let us denote them as respectively (L^{B}=\left(1-B\right)^{-1}) and (L^{F}=\left(1-F\right)^{-1}). Here (B) and (F) refers to respectively Backwards and Forwards. (L) comes from the name of those matrices, the Leontief inverse.

Limitation:

  1. Increasing on product \(i\) is assumed to lead to additional producing of product \(j\), while in reality, there is a problem of matching up: if a product \(k\) is required too in producing \(j\), this simply increasing on \(i\) should not have any effect on \(j\). However, Input-Output analysis ignore this matching problem.
  2. Some systems do not have \(X_{i}=X^{i}\) and the current Input-Output analysis does not apply to those systems.