《数学建模》课程大纲

课程名称: 数学建模
英文名称:Mathematical Modeling

【先修课要求】微积分、线性代数,最好有概率论、统计学、普通物理的基础。
【学生预计课程所花时间,小时,按照课程成绩良好以及以上学生粗糙估计】32(上课)+ 90(完成作业和课程项目)+10(复习和考试)= 132。平均每周大约8小时。

课程简介

数学建模是双向的,包含把数学用于描述现实,从现实中抽象数学概念。当然,一般来说,更多的是前者:数学用于描述现实解决现实中的我们关心的问题。在本课程中,希望通过对以下三个方面的理解:什么是数学建模、数学建模的典型过程、数学模型及其描述的现实的例子来帮助学习者建立起来数学建模的习惯并提升数学建模的能力。 大量的科学研究本质上都是数学建模。因此,本课程适合物理学、生物学、地球科学、系统科学、应用数学、经济学、社会学、语言学等多个学科的有志于基础性或者应用型科学研究的学生学习。

课程目标

数学建模课程知识上的目标是帮助学生了解和使用数学建模的一般过程,也积累一些典型数学模型。在思维方式上,本课程的目标是培养学生把实际问题抽象和转化成数学结构的习惯和能力。本课程也会通过应用部分的例子来稍微展示一下数学建模和系统科学的联系。

课程设计思想

课程设计原则、设计方法

本课程的设计原则是:按照课程目标来决定授课内容和授课方式,内容要体现这个学科的学科大图景——典型对象、典型问题、典型思维方式、典型分析方法、和世界还有其他学科的关系。
这个原则背后的理念是:学习是为了创造知识、创造性地使用知识、欣赏知识的创造和创造性的使用。为了这个目的,不仅仅要学会知识,有系统的知识,还要从知识的学习、知识的创造过程的学习中体会到如何创造知识和创造性地使用知识,也就是学科大图景。
本课程的设计方法是:绘制学科概念地图,包含基本概念、核心概念,概念之间的联系,以及概念和学科大图景的联系。以学科概念地图为基础选择所要教授的概念和概念关系,以及回答每一项所选择的内容的理据性——尤其是从研究工作以及概念依赖关系的角度的理据性,也就是为什么这些内容是值得学习的。具体设计过程,除了课程整体概念地图,就不在这里给出。

MathModeling
图1:《数学建模》主要概念、概念关系、学科大图景(课程目标)。

什么是数学建模

为了理解现实,干预现实,利用现实,我们需要在大脑之中有一个描述现实的东西,这就是模型 。数学模型是有结构的现实在认知结构中的以数学结构为语言的表示。把问题表达为数学语言之后,我们可以做更加深入的思考,更加明确和严谨的思考

一个表示最高的要求是忠实,称为忠实表示,也就是现实有什么性质(通常表现为可以在现实中对这个现实对象做什么),就也能对模型做相应的操作,并且把模型上操作完的结果重新翻译到现实中的时候正好就是现实中的结果。但是,建立模型,核心的目标是解决问题,并且实际上,任何模型都是对现实的简化和抽象,最多也就做到在所关心的现实对象的某个侧面,建立了一个近似忠实的表示。这里包含了两个意思,第一不全面,第二有近似。那么,这个不全面有近似的对现实的数学抽象和简化表示的好处是什么呢?可计算。计算包含数学计算、推理。推理包含确定性以及概率性推理。这就是建模(从现实中抽象、简化出来的对现实的某个侧面的近似忠实表示),在可计算这个意义上,称为数学建模。那既然不完全有近似,要简化一些东西忽略一些东西,那么,忽略什么?这实际上是数学建模的核心能力,需要我们对现实对象的洞察和理解,也需要我们通过对前人所建立的具体现象的具体模型的分析和体会来帮助我们做好这个简化和忽略,来获得启发和借鉴。这也就是通常所说的数学建模中提出假设的阶段。

那既然模型不过就是现实的近似的不完全的简化以后的描述,为什么要有能够描述现实的模型,而不是直接针对现实得了呢?另外,就算建模,也可以冲着建立一个完全能够复现现实的,不管规则多么复杂的模型,来构建我们的数学模型啊?例如,将来我们也要学习的多主体建模(Multi-Agent Modeling)就是这样的模型。但是,我们说,基于细节规则的模型有了之后,我们往往会进一步问:这样的规则是从哪里来的?这就自然地会走到“理解型”的数学模型,抓住了主要结构的数学模型。因此,为了理解现实,干预现实,利用现实,我们需要在大脑之中有一个描述现实的东西,这就是模型,尽管不完全准确不完全忠实,但是能用,而且往往这个模型经过检验和修正推广之后,还可以成为更大的描述现实的模型的一部分。

回到对现实可以做什么的问题,这就表现为现实对象之间的关系,或者用计算机编程的语言叫做对象上的方法或者说操作。有了操作,自然就得考虑对象的状态。如果对象的状态比较复杂,我们可能还得在这个对象的内部引入一个模型来描述,也就是对象的内部有子对象,子对象之间有关系,子对象的各自状态和子对象之间的关系合起来,构成了父对象的状态。同时,这些个子对象及其关系也可以被父对象上的操作所改变。于是,所谓的建模的问题,就是针对一个现实对象,我们希望得到一个描述这个对象的状态以及对这个状态的操作的表示。因此,抽象、分解和综合,自然也就成了数学建模的典型思维方式

在假设提出之后(如果表示不够好,将来可以更改这些假设,重新来),构建出来什么样的模型,有了模型如何计算,算出来的结果是否足够接近现实,能够解决现实问题,都必须有严格的逻辑基础。也就是说,人类思维的创造力,就在于根据现实对象的行为提出假设和将来解释模型的计算结果,以及按照模型算出来的结果和现实的对比来更新假设,剩下的按照假设用合适的数学结构写下来模型,求解模型,都是不需要人类创造力的,只需要经验。这就要求你有大量的合适的数学结构可以选择来描述现实,你有合适的方法来求解模型。如果满足要求的数学结构还没有,或者得到的模型的求解方法还没有被提出,那个时候,就从数学建模的研究,走到了数学的研究。本课程中所有的针对具体现象的具体模型及其构建过程的学习,都是为了体会好上面关于什么是数学模型的阐述。

基于以上对于数学建模的认知,数学建模课程目标是思维上,给现实对象建立数学模型的习惯和能力;知识上,建模的一般流程,典型的模型,对什么是数学建模的认知。数学建模的学科大图景包含:

  • 数学建模的典型对象:可以用数学结构来描述的现实对象;
  • 典型问题:找到现实对象的数学模型;
  • 典型分析方法:观察(什么操作、操作结果),提出假设,找到数学结构,求解模型,对比计算结果和观察实验,重新提出假设,甚至重新观察;
  • 典型思维方式:系联性思考,分解和综合,实验检验,批判性思维;
  • 和世界还有其他学科的关系:所有的科学学科的核心思想,任何可以数学化的对象,通常在成为专门学科的研究对象之前的。

学什么怎么学

本课程的基本目标是,通过从对现实中的具体现象和具体问题到具体的数学结构的构建过程的分析和欣赏、模仿构建、自主构建的过程中,学会构建(和理解、使用、检验、欣赏)模型,学会上面的数学建模的学科大图景,成为一个模型思考者——用数学结构给世界建立模型,从给世界建立模型的过程中提炼出数学结构。

怎么学呢?通过做中学和理解型学习,用具体例子,提炼思维方式,结合学科大图景。

离开具体模型的分析、欣赏、模仿、构建过程学不会自主构建模型,但是,只依赖具体模型的学习也不可能就学会自主构建模型,最多只能学会使用模型。学习的目标是创造知识和创造性地使用知识,而不仅仅是重复性地使用知识。如果所需要用到的数学结构是新的,则属于创造知识;如果所需要使用的数学结构是前人已经提出的,那么就是创造性地运用知识。如果我们没有体会到这些,仅仅是学到了一张表,表上面的内容是“针对某某现象,用某某模型”,并且以后你遇到现实中的某现象的时候就可以通过查表来找到合适的模型,这当然也有好处总比没有模型好,那就是重复性地使用知识。这不是我们的学习目标。

数学建模从某种意义上来说很像一门艺术。我们用学会绘画来类比。学练技法不会成为画家,当然不练不行。欣赏名画不会成为画家,当然最好还是看点。只有体会从现实和情感到绘画,以及从绘画到现实和情感,才能真的提升绘画创作的水平。但是,人家教吗?教得了吗?学练数学结构本身和数学题求解不会成为好的建模人,当然,不练不行。欣赏前人建好的模型不会成为好的建模人,当然最好还是看点。只有体会从现实和思考到模型,以及从模型到现实和思考,才能提升建模的水平。

但是,这样的真的帮助学习者成为画家的绘画有人教吗,教得了吗?

在这里,我们希望教会你真正来数学建模。我们还真的能教,你也应该真的能学会。

当然,你需要准备好一些数学结构:越多越好,理解有深刻越好;对数学概念的理解,要找到概念提出的动机背景,了解其产生的过程。你还要在本课程中有时间的付出,来体会这些模型的建立,尝试自己来建立一些现象的模型,甚至自己来找到合适的现象。除了时间的投入,你也要有很高的思维深入的投入。如果你不是严肃的想学习如何建模,建议你不要来选择本课程。

教学内容和学时分配

  • 第零章 课程目标和学习方法(3学时,选修)
      

    • 0.1 课程基本目标:知识目标和思维方式目标
    • 本课程在知识上的目标是帮助学生了解和能使用数学建模的一般过程,也积累一些典型数学模型。本课程在思维方式上的目标是培养学生把实际问题抽象和转化成数学结构的习惯和能力。本课程在学习时间和思维深度上的投入要求。

    • 0.2 理解型学习方法和概念地图
          

          

      • 0.2.1 批判性思维和成长型思维
      • 没有经过我自己的理性检验(观察实验或者计算推理)的东西不能成为我下一步思考和认识世界的基础。举例:平面几何(论证中每一个步骤都需要理由,都可能不成立)、伽利略关于“重物落的快”的论证(不是结论对就是对的,或者论据对就是对的,不是大人物说的就是对的,通过替换对象来考察隐藏的逻辑假设以及凸显事物的本质特征)
        成长型思维:做中学、教中学、挑战着学、创造中学、任何时候都可以再进步。
          

      • 0.2.2 系联性思考
      • 未知联系已知就是理解,构建理解的基础和框架,具有系统性(核心和成长),和逐条记忆检索相反。注意,把联系表达成网络和矩阵之后,还可以分析和计算联系:系联=联系1+联系2+联系3+⋯,从孤立到有联系,从直接联系到间接联系,从个体到整体。
          

      • 0.2.3 学科大图景
      • 一个学科的典型研究对象、典型研究问题、典型思维方式、典型分析方法、和世界还有其他学科的关系。
          

      • 0.2.4 概念地图和概念地图的制作
      •    

      • 0.3 科学、数学与现实的关系
           

            

        • 0.3.1数学作为思维的语言和描述现实的语言、数学建模
        • 思考的语言,集合、映射的语言的重要性
          举例:“苹果的加法运算”到底是定义在哪一个集合上的运算:苹果的集合、苹果数量的集合、还是幂集
          从事物中抽象出关系,把关系整理成为数学结构,找到一个事物自身最切合的数学结构
          举例:位置坐标存在加法运算吗,还是位移矢量?矢量加法的一般性和举例
          举例:交换律不满足的操作(翻转三角形),矩阵
          给事物的状态,事物的状态的变化——也就是状态上的操作,找最合适的数学结构
          举例:位移的矢量模型,运动物体的质点模型
            

        • 0.3.2 科学的实用主义和科学的可证伪性
        • 科学为现实提供了可计算的可证伪(但是迄今为止还没有被证伪的)心智模型
            

        • 0.3.3 归纳与演绎的逻辑
        • 归纳的作用和局限,天下乌鸦一般黑,归纳当做概率性推理

    • 第一章 数学建模引论(3学时)
      • 1.1 数学建模的一般过程
      • 经验,体验,深入理解现象,对于建模的重要性。现实世界的输入,通过实验观察(建立后检验)、经验(启发建立过程,主要因素的选择)。数学结构准备。还有模型思维(用模型去描述世界的习惯和意愿,以及能力)。剩下的就是逻辑。无论求解过程多么复杂,都是技术。模型和模型的结果是收集数据,进一步改进的基础。观察测量体验现象,做假设(确定主要因素,确定主要因素的数学描述,甚至估计主要因素的值),构建模型,求解模型,靠实验和观察来检验模型。必要的时候重新来一轮。
        实际上课堂上能体验的没有观察的部分。所以,要配合课程项目来实现教学目的。
        举例子:决策模型的发展历史和关键点(简单效用函数和最优解,复杂效用函数和更优解,多主体规则模型,建模到底为了什么,理解现象吗?),简单阐述,后续展开

      • 1.2数学和数学建模的关系
      • 数学是一个从最少量的必要的假设出发通过人类思维来构建自洽的有系统的数学结构的学科。在这里,数学是思维的语言,具有明确含义的,帮助做严密的推理的语言。不需要现实世界来检验,只需要自洽。同时,通过数学建模,数学为描述现实提供语言,或者受现实启发提出新的数学结构。但是,要注意,这个时候,数学是现实的表示,而不是现实自身,很可能包含很多近似。数学是现实世界的虚像,还是说现实世界是数学的实像(投影)。求解模型需要深刻理解或者创造数学知识。
        举例子:引力模型的发展历程和关键点、量力态的数学模型,简单阐述,后续展开

    • 第二章 提炼和相关因素的假设:简单数学模型的威力(6学时)
      • 2.1简单模型背后的假设
      • 数苹果,数鸡蛋,数被引次数

      • 2.2 简单模型的大意义
      • 动物新陈代谢的速度,植物呢?比例模型

      • 2.3粗糙模型的威力
      • 量纲分析,确定相关因素得到的为例

      • 2.4 独立事件的建模
      • 独立事件的高斯分布及其相关模型,中心极限定理,从预实验估计被试数量,创新人才和均值,概率分布函数的宽度的意义

    • 第三章 因素之间的因果关系:力学世界观和动力学模型(4学时)
      • 3.1 引力模型的发展和力学世界观
      • 位置和动量状态、状态演化和演化的原因,引力模型的发展历程,微积分的发明
        描述性和解释性模型(本质上还是描述),科学不回答真正的为什么的问题,只关心对比模型和现实的结果,以及希望模型的假设越少越好,模型越普适越好

      • 3.2 力学世界的延伸:其他动力学模型
      • 举例,虫口模型,捕食者-被捕食者模型,军事,疾病传播

    • 第四章 走向相互作用的建模:分解、综合、系联(14学时)
      • 4.1多随机因素相互作用和概率图模型
      • 超越独立事件,走向相互作用。反推信息和贝叶斯公式。反向推断概率图模型,用于从概念同时认识的数据中获得概率图

      • 4.2网络建模
      • 具有相互作用的个体的集合,网络典型分析的适用性,网络建模举例

      • 4.3 社会学习现象和模型
      • 广告,信息和同伴压力导致的信息塌缩。需要多少个人来误导和模型参数的关系

      • 4.4 决策行为的建模
      • 从决策模型到博弈模型,偏好函数和最优化,带有随机因素的决策模型,其他偏好因素,不一定最优化,彻底放弃这条路?多主体行为规则模型。规则化,规则哪里来?

      • 4.5 矢量和矩阵的实像
      • 语言的矢量模型、量子态的矢量模型、Markov过程、概率图模型、间接联系、Feynman图、科学学中的矩阵。
        透过现象上的差异看到数学结构的相似性。反过来,难道数学结构的相似才是真的相似,才是现实?

      • 4.6神经网络建模
      • 黑箱建模、时间序列、人工神经网络建模举例(能够判断好坏的威力)

      • 4.7相互作用多体系统模型:more is different
      • 振动和波动、生命游戏、粒子的动量能量和寿命

    • 第五章 再论数学模型(2学时)
      • 5.1黑箱模型和机制模型:模型和理解
      • 神经网络建模、多主体建模、机制建模的区别和联系。科学和理解的关系。

      • 5.2 做一个模型思考者
      • 建模的理念、习惯和能力。时时刻刻准备着建模。

        • 为什么要建模?
        • 当你给事物一个名字的时候,你就有了运用这个事物来思考的能力,模型(背后的现象,假设,数学结构,求解,思考),成为进一步思考的基础。动力学的模型,描述性的模型,动力学的为什么和真正的为什么。科学不回答真正的为什么,只回答动力学层次的为什么,只关心模型和现实的测量结果的对比。每一步都更加有道理,尤其是假设的提出和检验。

        • 怎么建模?
        • 建模的一般过程:观察和体验、提出假设、找到合适的数学结构来把问题表达成一个数学问题、求解数学问题、解的检验和使用,回去修正假设甚至进一步的观察和体验,数学模型和建模过程的一般化系统化。数学知识的准备、现象的深入体验、随时准备建模的思想状态、积累一些建模的经验和可供参考的模型

        • 什么时候到头?
        • 简单性和准确性的相互协调。科学就是建立现实世界的数学模型,并且保证算出来的结果和观测结果在误差范围内相符,并且尽可能系统化(越少的假设和基本概念越好),对一般性和系统性的追求。

    教材与学习资源

    教材:
    E.A Bender《Introduction to Mathematical Modeling》
    Scott Page 《The Model Thinker》(模型思维),有配套视频课程

    参考书:
    W.I.B. Beveridge, 《The Art of Scientific Investigation》
    Karl Popper 《The Logic of Scientific Discovery》
    Timothy Gowers,《Mathematics: A Very Short Introduction》
    Albert Einstein and Leopold Infeld,《The Evolution of Physics》
    Richard Feynman, 《The Character of Physical Law》
    Richard Feynman,《The Feynman’s Lectures on Physics, III》
    吴金闪《教的更少,学得更多》(书稿
    吴金闪 《二能级体系上的量子力学》(书稿
    吴金闪《系统科学导引》(书稿
    吴金闪《数学建模引论》(书稿书稿公众号版本

    考核方式

    课程考核包括以下几项:
    (1)作业(40%)
    (2)课程项目(40%)
    (3)期末闭卷考试(20%)

    大纲起草人:吴金闪,狄增如,郑清华

从面向对象编程看分解和综合,个体和整体

计算机描述世界和解决问题的方式是对象、算法和编程(算法用语言表示出来)。计算机科学的对象是计算机科学在描述世界的时候对所描述的对象的抽象。一般来说,一个对象对于这个对象的使用者来说,主要关注的是:这个对象和外界是什么关系,也就是外界输入给这个对象什么,这个对象给外界输出什么;同时,刻画这个对象的编程者,关注的是这个对象内部需要什么元素,元素之间什么关系,这些内部元素和元素之间的关系如何按照接收到的外界信息来更新状态,从而如何产生输出给外界的符合其行为的输出。也就是说,对于把这个对象和程序当做工具来使用的人来说,我们得看到这个对象的整体,也就是跳出来看;对于设计和实现这个对象和程序的人来说,我们得看到这个对象的细节以及细节和整体的联系,也就是钻进去看。

如果我们有的时候需要创造性地使用这个工具,那仅仅跳出来就不够了。因为不了解细节如何实现的人,只能把这个工具用到它所设计的地方。就好像说,一个扳手就是用来拧螺丝的。但是,如果我们还了解这个扳手的其他细节,例如比较重,例如比较硬还有一定长度,没准在需要的时候我们还可以把扳手当做榔头或者撬棍来使用。同样,如果我们了解这个对象和程序的一定的细节,有需要的时候,我们就可以把这个程序的一部分算法和程序甚至设计上的想法拿来在适当的场合重用,或者迁移到一个完全不同的场景。这也就是创造性地使用工具和创造工具。

因此,如果要创造知识和创造性地使用知识,我们在学习的时候就要进得去处得来,跳出来的时候看到整体忽略其内部细节,钻进去的时候看到细节以及细节和整体的联系,合起来就是从细节看到整体,从整体的角度来看细节。这就是我们说的分解和综合,或者说既见树木又见森林,或者说,系联性思维。

草食者的思考:教育的问题和出路在哪里

看起来,以“刷题式学习”和“军事化作息”为标志的“提分教育”将会在中国越来越流行了。毫无疑问,对于绝大多数人,提分教育的提分效果那是肯定的强啊!怎么办?学习者和学校都要加入这个洪流吗?管理者应该鼓励提分教育还是听之任之?如果我们希望跳出来这样的教育,怎么跳?

这些都是肉食者需要思考的问题。今天,我这个草食者来给先抛个砖。不过,这个砖也得有有心和有水平的肉食者才接得住,才能引出来玉啊。无语凝噎…..

既然提分教育下大多数学生的考试分数确实会有很大提高,能够进入更好的上一级学校,那么,他有什么不好的呢,如果我们要跟提分教育竞争,怎么办呢?

提分教育哪里不好了?

学习的目的是为了创造知识、创造性地使用知识,以及欣赏知识的创造和创造性的使用。教学的目的是为了不教,为了帮助学生达到上面的学习的目的。对于这样的目的来说,我们只有达到对知识的深入的理解,对知识的产生过程的深入的理解,对知识的产生过程中体现的学科思维方式和分析方法的深入的理解,才能学会提出问题、解决问题、发展和提炼学科思维方式和分析方法。

我们来看提分教育的主要武器:刷题式学习(军事化作息还是为了刷题式学习)——学生可以在看书理解不到位的情况下开始做题,一致做到看到这道题基本不用思考而是按照脑子里面对这道题的题型和知识点的定位就可以把事先准备好的套路化的答案用上。甚至,老师们还总结出来各种题型,形成各种口诀,帮助学生来更快更准确地答题。见,例如生活口诀化,学习口诀化,拿什么口诀对付未来呢?

在这样的教育下,学生学到的是什么?一大堆答案,一大堆题,以及两者之间的对应索引关系。也就是说,学生学了之后就成了一个搜索引擎,例如百度、XX搜题。

问,百度、XX搜题,能够实现前面说的学习的目的吗?搜索引擎(当前的,以后的结合了概念地图、知识图谱的搜索引擎再说)的局限在于它只能提供已有问题和已有答案之间的匹配。你说,来提出个新问题、做出个新答题方式和新答案,也就是前面说的最核心的能力——提出问题和解决问题并提炼思维方式和分析方法,它是完全做不到的。

所以,提分教育可以把人培养成“计算器”、“搜索引擎”,但是绝对达不到培养问题提出者、问题解决者、学科发展者的目标,甚至,连欣赏知识的创造和创造性的使用的能力都不会有。提分教育下的学生们,可能会觉得,多点知识本身就挺好,或者甚至痛恨知识。这样,如何能够形成欣赏水平呢?没有好的欣赏水平,那好的知识的创造和创造性的使用就更加不用说了。顺便,这也是和我们现在看到的情况——有的研究者都已经拥有固定职位了还是在改参数发水文:他们在学习过程中可能真的没有形成对好的工作的欣赏水平。

那既然提分教育不能实现我们的真正的学习的目标,那我们怎么办?

如何突破提分教育,实现真正的学习的目标?

提分教育是有竞争力的,甚至,按照物理学家的话来说,是一个局域最大值点(其实,物理喜欢用局域最小值),一个吸引子。也就是说,如果没有更大的能量的输入,一个处于局域最大值点附近的任何点,都会或快或慢地被吸引到这个最大值上去。用日常生活的语言来说,就是很多其他学校,除非已经找到更好的学习策略,或者有外界的强烈推动(例如很强烈的理念和经费的输入),都会或快或慢地采用提分教育。为什么,很简单:提分教育的提分效果确实强啊!只要我们还是基本按照选拔性考试的分数来选拔人才,那提分教育的效果的说服力就是巨大的。

那怎么办?

我们需要一个能够在提分效果上和提分教育相当,同时还可以帮助学生达到前面提到的学习的真正的目标的教和学的方法。这样的方法有吗?有,例如本公众号一直在推广的理解型学习——以学科大图景和成长型思维为目标的以批判性思维和系联性思考为指导的以概念地图为技术基础的理解型学习。更多的这个教和学的方法的介绍,请看本公众号其他帖子。入门的话,可以看理解型学习名词解释。在这个方法下面,具体知识的学习是为了体会到学科大图景(这个学科研究什么对象、什么问题,采用什么思维方式,分析方法,这个学科和世界以及其他学科什么关系),因此,往往需要通过创造体验式学习,也就是通过回到这个概念和方法提出的问题背景中来体验这个概念和方法的提出,以及通过新旧概念之间的联系来理解和构建新概念。理解就是看到联系,内在的联系,而且要批判性地来看,不是关注表面联系,不是别人说什么联系就是什么联系,要自己看。

那理解型学习如何实施?

我们需要好老师。如果老师自己学习的时候不是通过理解来学习的,而是通过搜索引擎式的提分教育来学习的,我们如何又能奢望这位老师当了老师之后会转过来,采用理解型学习呢?那我们如何才能把这样的学生吸引过来当老师呢?这是教育制度方面的问题。如果我们把这样的学生吸引过来了,然后,再帮助这样的学生学好一两个学科,具有理解型教和学的理念和操作能力,那我们就成功了一半。

我们需要理解型学习基础设施。这个基础设施第一包括前面提到的帮助吸引更好的做理解型学习的学生来当老师的制度建设。这个基础设施还包括每个学科的学科大图景、学科概念地图(包含学科概念体系、概念和学科大图景之间的联系)、体现学科大图景和重要概念的问题场景(这个问题场景一方面用来课堂教学,一方面用来做以项目为基础的教学)。

这些基础设施谁来建设?这显然是肉食者的责任。当然,个体老师和学生的层面,也是可以做很多的。例如,每一位老师都要把自己所教的课程的学科大图景、学科概念地图、典型案例整理出来,在教学活动中尽量启发学生思考帮助学生体验问题提出和解决的过程,感受到其中的典型思维方式和分析方法。

如果从国家的层面,个人的层面,甚至还有商业的层面,都配合起来,各自尽到责任了,那我们就能够达到:学生分数不会比提分教育差多少(如果还是差一点的话,那就也正在理解型学习的基础上稍微加上一点刷题式学习,但是不用多),花在刷题上的时间少,对学科理解深刻,学会了学习方法,对提出问题和解决问题有体验和意愿。这样,我相信,其接受程度绝对会超过提分教育。

如果这些不去做,那么,提分教育肯定会是个吸引子:老师和学校,还有国家不需要付出太多的努力,顺着这个家长和选拔制度的山坡,自然地就会变成大家都采用提分教育。

这些基础性的工作:吸引好老师的制度、帮助老师提升学科理解和理解型教和学方法的理解、学科大图景、学科概念地图、体现学科大图景和重要概念的典型案例,毫无疑问是要额外花费大量的资源的。但是,只有做了,才能培养学生成为问题提出者和解决者,才能达到把学生培养成为创造知识和创造性地运用知识​的人,才能压过​提分教育一头。

当然,肉食者做不做,那是另一个问题。其实,跟在科学研究前辈和巨头前面,捡捡便宜也挺好的​。不过,第一,人家还愿不愿意给你捡,第二,一个拥有这么多年历史和这么大人口数量的国家,和这个国家对整个人类文明的贡献到底是否相配​?

​一句话:理解型学习可以压过提分教育,但是需要国家和个人的努力才行。​不过,至少,我们有一个努力的方向了,不是吗?

理解型学习名词解释

理解型学习的全称是:以成长型思维和学科大图景为目标的以批判性思维和系联性思考为指导的以概念地图为技术基础的理解型学习。

以下是其中每一个关键词的解释:

成长型思维:做中学、教中学、挑战着学、创造中学、任何时候都可以再进步。

学科大图景:一个学科的典型研究对象、典型研究问题、典型思维方式、典型分析方法、和世界还有其他学科的关系。学会知识还是创造学会知识的思想和方法(尽管,是不是其实这些思想和方法还是知识?),以科学为例——用具体例子体现科学是给世界构建一个可计算的心智模型并且这个模型给出来的结果和实验以及观测结果相符。如果是为了学会创造知识的方法,而不仅仅是知识,那么,学科大图景比知识本身重要。当然,不学习知识和知识的创造过程,体会不到学科大图景。

批判性思维:没有经过我自己的理性检验(观察实验或者计算推理)的东西不能成为我下一步思考和认识世界的基础。例如伽利略运用斜塔实验和纯思辨的理想实验对重物落得更快的批判以及我们对后者的批判、冰上运动和力是维持运动的原因。

系联性思考:未知联系已知就是理解,构建理解的基础和框架,具有系统性(核心和成长),和逐条记忆检索相反。注意,把联系表达成网络和矩阵之后,还可以分析和计算联系:\(系联=联系^{1}+联系^{2}+联系^{3}+\cdots\),从孤立到有联系,从直接联系到间接联系,从个体到整体。

概念地图:概念,通过联系,构成的网络。也称为知识图谱、概念网络。其中学科概念地图指的是把一个学科的主要概念、概念之间的关系、概念和学科大图景之间的关系,整理之后,制作出来的概念地图

创造体验式学习,也称为创造中学、挑战着学:在学习新概念的时候,老师创设一个接近概念提出的当时的背景的问题,不管是从理论本身出发,还是从具体要解决的实际现象出发,启发学生把这个新概念自己创造出来,体验一下其创造过程,希望不仅能够帮助学生学会这个概念,还能迁移到如何创造其他类似概念。

以项目为基础的学习,也称为做中学:设计一个能够把之前学过的知识和思维方式用上的问题,或者选择一个类似的实际问题,来解决,从而帮助学生更好地理解学过的知识和思维方式。当这个项目用于启发学生“创造”新知识或者思维的时候,这就是创造体验式学习。

讲给别人听,或者叫同伴教学法,教中学:把一个问题给别人讲清楚,接受别人的提问和挑战,可以使得自己理解的更深刻更清楚。

教的更少,学得更多:在老师指导下,通过理解型学习、创造体验式学习等方式来学习尽可能少的核心概念和基本概念,以及依靠这些概念提出和运用过程来增加对一个学科的大图景的认知,从而自己学会创造知识、创造性地运用知识和进一步学习这个学科的知识,就实现了“教的更少,学得更多”的目的。

学的更少,学得更多:从学生的角度,可以在老师的指导下,也可以在合适的学习资料的帮助下自学,通过理解型学习、创造体验式学习等方式来学习尽可能少的核心概念和基本概念,以及依靠这些概念提出和运用过程来增加对一个学科的大图景的认知,从而自己学会创造知识、创造性地运用知识和进一步学习这个学科的知识,就实现了“学的更少,学得更多”的目的。

痛快教育:理解型学习、创造体验式学习的实践很多时候,会比主要依靠记忆和重复刷题的机械式学习更需要时间和思考的投入,这通常本身并不一定愉快,往往不轻松,但是学习以后的效果却往往会更快乐——学会了创造知识的方法、体验了创造的过程。把这个过程的痛和结果的快合起来称为“痛快教育”。专门选择了这样一个词来和“快乐教育”、“减负”对比起来。追求短期快乐,减掉思维负担的教育,长期来看,只能增加负担,增加痛苦。当然,如果减掉的不是思维负担,而是那些可有可无的知识点,可以被其他更好的知识点代替来体现学科大图景的知识点,那这个负是该减的。这样减掉之后就正好达到了“教的更少,学得更多”。然而,如果一位老师没有这些理念,或者对学科认识不够深刻,则减掉的往往就是思维负担,就是最重要的学科大图景,只留下一个个孤立的需要通过刷题来学习的知识点。

为了理解自己和世界而学习:看看世界到底怎么回事,这世界的哪些地方“我”自己竟然可以理解,看看我自己最善于做的是什么,为此而思考而学习而创造,是一件快乐而有意义的事情。

硬核本科人才培养

学习的根本目的是创造知识、创造性地使用知识,以及欣赏知识的创造和创造性的使用,对于这些目的,最重要的是对知识的理解。这就需要通过“以成长型思维和学科大图景为目标的以批判性思维和系联性思考为指导的以概念地图为基础基础的理解型学习”,搞清楚学什么、怎么学、为什么学这个。除了学习方法的基础,当然,创造和创造性地使用以及欣赏,还需要学会一些前人的知识和前人解决问题的方法以及其中体现的思想。那么,这样的知识和思想,以及解决问题的过程和经验的体验,包含哪一些呢?

首先,本科所学习的东西,要比较基础,比较普适,将来可以专门化到多个领域。在“学科层次和本科专业选择”这个帖子里面我讨论了学科的层次结构。从中可以看到,做为科学的语言的数学以及最体现科学的精神的物理,正好就是满足上面的要求的要学习的东西。

其次,一定要在一定量(越少越好)的学会具体知识的基础上,体会好每一个学科的大图景,也就是典型研究对象、典型研究问题、典型思维方式、典型分析方法、和世界还有其他学科的关系。

最后,还要进一步从具体学科的学习升华到上面的理解型学习的目标——学会学习和思考:“以成长型思维和学科大图景为目标的以批判性思维和系联性思考为指导的以概念地图为基础基础的理解型学习”。

当然,补充一下,创造体验式学习和以项目为基础的学习,是非常重要的教和学的方式,“做中学”、“学以致用”能够帮助学习者更好地实现上面的几个学习目标。

顺便,最近学院在讨论系统科学本科人才培养。在这个帖子里面,我来分享我对本科人才培养的思考。我先设计一个硬核版本的,将来再设计一个更软一点的。在“工具、课程与学习资料”这个帖子里面有一部分课程的学习资源。

硬核版本本科培养目标:具有扎实数学物理知识和思维方式(批判性思维、系统性的知识体系、数学和科学的关系等)的基础,具有对一两个专门领域的一定理解,具有一定创新精神和成长型思维,具有系统思维(系联性思考)的多学科复合型人才。

核心课程

  • 学习方法部分:学会学习和思考(理解型学习、创造体验式学习、以项目为基础的学习、讲给别人听、分解和综合、系联性思考、知识的系统性)
  • 数学部分:数学分析(或者微积分)、高等代数(或者线性代数)、概率论、统计学、复变函数(选修)、拓扑学(选修)、群论(选修)、微分几何(选修)、泛函分析(选修)、优化理论(运筹学、控制论)、微分方程定性理论(选修)
  • 物理部分:力学、分析力学、统计物理学(压缩热力学部分)、电磁学电动力学狭义相对论结合(压缩内容,主要学会对称性、电磁学中的数学、狭义相对论的提出等)、高等统计物理学(选修),量子力学(选修)
  • 计算机科学部分:算法导论、编程语言(做中学)和编程方法(面向过程、面向对象)的结合、科学计算(微分方程数值求解、数值积分、数值线性代数、插值、作图),机器学习基础(选修)
  • 系统科学部分(夹带私货):系统科学概论(有整理出来的具体研究工作案例支撑,有听一听的,还有做一做的,或者分为系统思维1和2)、数学建模(最重要提升用数学结构描述世界的能力,也学习一些典型现象和对应的模型,不过最重要的是这个构建对应的过程以及其中体现的思维。例如,可以结合以具体领域的例子支撑的非线性动力学,可以把量子系统的行为到量子状态的矢量描述当做例子)、数据科学(从数据中获取信息的能力和技术)、网络科学(系联、和矩阵分析的关系)、复杂适应性系统
  • 经济学部分:微观经济学、博弈论、计量经济学(选修)
  • 领域方向课部分:经济学导论(选修)、生物学导论(选修)、神经科学导论(选修)、地球科学导论(选修)、环境科学导论(选修)、教育学导论(选修)、历史学导论(选修)、人工智能导论(选修)、语言学导论(选修)

具体课程目标

  • 学会学习和思考:以成长型思维和学科大图景为目标的以批判性思维和系联性思考为指导的以概念地图为基础基础的理解型学习、创造体验式学习、以项目为基础的学习、讲给别人听(同伴教学法)、分解和综合、系联性思考、知识的系统性。以具体学科的学习为例,从知识的学习中提炼出来学科大图景,解决学什么、怎么学、为什么的问题。直接先修课(间接依赖的忽略):无,实际上需要学习者对一两门课程具有比较深刻的认识。
  • 力学:力学世界观(系统的状态,状态描述,状态变化的原因)、一个学科的系统化的概念体系(用最少的基本概念和假设来通过逻辑构建整个理论)、数学是科学的语言(描述世界,开展思考)、科学和现实的关系(科学是世界的可计算的可证伪但是迄今为止尚未被证伪的心智模型),用具体的力学的知识来体现好上面这些目标,力学是物理学的导论课,甚至是整个科学的导论课。直接先修课(间接依赖的忽略):数学分析(最好能够在课程之间例如和数学分析或者微积分协调一下,帮助力学的学生能够具有学习力学的基础,力学的老师呢可以把需要微积分的地方稍微往后一点等等微积分的进度),如果没有数学分析的基础,则需要增开一个实用微积分短训。
  • 分析力学:从最小作用量原理得到整个力学理论、变分方程的运用、乐朗德变换的运用、力学系统的完整描述(拉氏量、哈密顿量),做到能够从一个系统的完整描述开始得到所有的力学信息。直接先修课(间接依赖的忽略):数学分析、力学。
  • 统计物理学:从力学到统计物理学的推导的尝试、平衡态统计的系综理论(理想气体、Ising模型)、关联函数、相变、平均场理论、布朗运动和随机过程、统计物理学在其他系统中的运用,做到能够用分布函数及其演化方程的方式来描述物理的以及其他的多体系统以及在这中间的例如关联函数和平均场理论等一些方法。直接先修课(间接依赖的忽略):数学分析、线性代数、概率论、分析力学。
  • 电磁学电动力学狭义相对论结合:从电磁学的现象到积分形式的基本方程、从积分形式的基本方程到微分形式的基本方程、用格林函数和对称性来在一些具体系统上求解这些方程、位移电流的引入、光速不变的发现,实验和理论上的困境导致狭义相对论的出现、狭义相对论的基本内容(时空、距离),做到从实验和理论上的困境出发来找到突破口找到更加统一的理论,同时也学习一点场的数学。直接先修课(间接依赖的忽略):数学分析、力学,推荐具有分析力学的基础。
  • 高等统计物理学:关联函数临界现象和相变、平均场理论的更多表现形式、随机微分方程和统计物理学中的随机过程、Kubo的非平衡统计力学框架(投影算符、有效方程)、统计物理学的研究实例。这门课是在眼界和具体方法上对《统计物理学》的补充。直接先修课(间接依赖的忽略):数学分析、线性代数、概率论、分析力学、统计物理学。
  • 量子力学:量子系统的行为、量子状态的数学模型、量子状态变化的数学描述、对其他可能的理论形式的探索。这门课能够非常好地体现科学和现实的关系,科学和数学的关系,从知识都到科学研究的过程、困难、创造和逻辑,同时也对矢量的一般威力有一定的认识。直接先修课(间接依赖的忽略):线性代数、分析力学。
  • 数学分析:集合、映射、极限、微分等概念体系为主,具体计算为辅,主要启发学生做深入和严密的思考,面对当年数学基础的挑战,顺便也学点无穷小、微积分等知识。直接先修课(间接依赖的忽略):中学数学。
  • 线性代数:集合、映射、矢量空间,矩阵论,做到善于把实际对象变成矢量和矩阵。直接先修课(间接依赖的忽略):中学数学。
  • 概率论:古典概型、现代概率论、随机事件和随机变量、中心极限定理、大数定律、贝叶斯公式,做到对概率论的基本概念和重要结果心里有数,能够把问题变成概率论问题。直接先修课(间接依赖的忽略):数学分析、线性代数。
  • 统计学:经验分布函数(empirical distribution function)、样本、置信区间、统计学基本问题(从给定样本中得到经验分布以及这个经验分布的接近程度)、非参数估计、参数估计、p值的含义和问题、贝叶斯推断,做到对统计学的基本问题心里有数,能够把问题变成一个统计学问题。直接先修课(间接依赖的忽略):概率论。
  • 数学建模:用具体的建模过程、学科发展过程的例子,来展示什么是数学建模——也就是把实际问题变成一个数学问题然后解决问题的过程。做到把实际现象和问题变成数学物理学问题,用合适的数学结构和物理概念来描述世界,了解科学研究的基本过程(从现象或者理论中提出问题、把问题数学化、求解问题、检验和推广答案)。这是整个科学课程的核心之一。直接先修课(间接依赖的忽略):数学分析、线性代数、概率论、力学、统计学。
  • 数据科学:给数据建模挖掘出信息的思维习惯和能力,时间序列处理、统计模型、关系数据的处理。直接先修课(间接依赖的忽略):数学分析、线性代数、概率论、统计学、编程语言和编程方法、机器学习,推荐具有数学建模的基础。
  • 系统思维1,2:用具体的研究工作的例子来展示系统科学都能够做什么,系统思想在里面起到了什么作用。一定要把(目前阶段看到的)系统思想提炼好,体现这些思想的例子分类分层次整理好。其中第一门课不太需要学生动手算,能欣赏,看出来哪里系统科学了,了解点什么是系统科学就行。直接先修课(间接依赖的忽略):高中数学、高中物理。第二门课,要求学生能够算,甚至能够主动提出和解决问题。直接先修课(间接依赖的忽略):数学分析、线性代数、概率论、力学、统计学、统计物理学。
  • 网络科学:用网络——相互联系起来的事物——来描述世界,解决问题的思维习惯和能力、典型网络分析方法和软件包、网络谱理论(矩阵、张量)、网络上的过程、网络的演化、网络的典型应用。直接先修课(间接依赖的忽略):线性代数、概率论、编程语言和编程方法。
  • 复杂适应性系统:内部状态和外部驱动互动更新的系统的典型例子和应用,也可以放到数学模型里面讲授。直接先修课(间接依赖的忽略):数学分析、线性代数、概率论、力学、编程语言和编程方法。
  • 优化理论:运筹学、控制论,现代视角:静态和动态过程的给定目标和约束的优化问题,和网络等学科的结合,和实际应用结合。直接先修课(间接依赖的忽略):数学分析、线性代数、分析力学、科学计算。
  • 编程语言和编程方法:编程的基本逻辑(教计算机干明确地的活)、变量、状态、操作、逻辑门、图灵机,顺便学会一门语言,了解和运用面向过程编程、面向对象编程。直接先修课(间接依赖的忽略):无。
  • 算法导论:典型优秀算法的思想、编程、应用和算法复杂度分析、可计算性。直接先修课(间接依赖的忽略):数学分析、线性代数、编程语言和编程方法。
  • 科学计算:数值微积分、插值、Monto Carlo、数值线性代数,科学计算软件包、并行计算、Linux操作,具有较强通用性的科学计算的算法和算法的运用,结合以项目为基础的学习。直接先修课(间接依赖的忽略):算法导论、编程语言和编程方法。
  • 机器学习基础:神经网络模型、优化算法、典型机器学习问题和算法、自然语言处理、知识图谱、自动机器学习,帮助学生准备进一步学习和发展更加专门的机器学习算法的基础。直接先修课(间接依赖的忽略):数学分析、线性代数、概率论、算法导论、编程语言和编程方法,推荐具有网络科学的基础。
  • 微观经济学:理性人假设、给定共同约束和共同目标的优化问题在经济学上的应用,结合经济学导引介绍一般均衡理论等整个经济学的大厦如何依赖于微观经济学,理论框架的问题。直接先修课(间接依赖的忽略):数学分析,推荐具有优化理论的基础。
  • 博弈论:多方可能有冲突的约束和目标的优化问题在经济学上的应用、多方的理性人假设,结合经济学导引介绍一般均衡理论等整个经济学的大厦如何依赖于博弈论,博弈实验研究和理论框架的问题。直接先修课(间接依赖的忽略):数学分析,线性代数,推荐具有优化理论的基础。
  • 计量经济学:截面数据的处理、时间序列数据的处理,回归、结构方程模型等统计模型,典型随机过程及其在经济数据和经济问题中的应用。也可以把内容拆分以后放到数学建模和数据科学里面。直接先修课(间接依赖的忽略):微观经济学、统计学,推荐具有数据科学、数学建模的基础。
  • 各学科导论课:用具体例子,体现好每一门学科的大图景:典型研究对象、典型研究问题、典型分析方法、典型思维方式、和世界还有其他学科的关系,精炼、清晰、深入,低起点、高终点。尽量做到除了大学基础数学(数学分析、线性代数、概率论)和物理(力学)之外,不需要其他先修课。

104536355

后续待补充