《线性代数》课程大纲

课程名称: 线性代数
英文名称:Linear Algebra

【先修课要求】高中数学。推荐已经学习过一门编程语言(随着课程学习也可以),学过集合和映射方面的知识、数学建模方面的知识就更好了,但是不做要求。
【学生预计课程所花时间,小时,按照课程成绩良好以及以上学生粗糙估计】32(上课)+ 80(看书完成作业)+ 30(课程项目)+10(复习和考试)= 152。平均每周大约10小时。

课程简介

线性代数的矢量和矩阵为描述世界提供了具有一定普适性的数学结构,数值线性代数是最重要的数值计算方法。本课程主要包含四个模块的内容:矢量空间,矩阵论,数值线性代数,线性代数的应用案例。本课程也为物理学、系统科学、数值计算的多门课程提供知识上的基础。

课程目标

这门课程的知识上的目标是帮助学生建构从集合映射到线性空间的数学概念体系,以及学会做数值线性代数。同时,在本课程在思维方式上的目标是把问题抽象和转化成矩阵和矢量的问题的能力,依赖抽象概念展开思考的能力。注意,大量的对象都可以被抽象为矢量和矩阵以及张量等数学结构。因此,本课程的知识内容尽管从数学上就是矢量、矩阵、张量,但是在应用上,会通过例子展示其普适性和威力。顺便,本课程也会通过应用部分的例子来稍微展示一下线性代数和系统科学学科联系。

课程设计思想

本课程的设计原则是:按照课程目标来决定授课内容和授课方式,内容要体现这个学科的学科大图景——典型对象、典型问题、典型思维方式、典型分析方法、和世界还有其他学科的关系。
这个原则背后的理念是:学习是为了创造知识、创造性地使用知识、欣赏知识的创造和创造性的使用。为了这个目的,不仅仅要学会知识,有系统的知识,还要从知识的学习、知识的创造过程的学习中体会到如何创造知识和创造性地使用知识,也就是学科大图景。

本课程的设计方法是:绘制学科概念地图,包含基本概念、核心概念,概念之间的联系,以及概念和学科大图景的联系。以学科概念地图为基础选择所要教授的概念和概念关系,以及回答每一项所选择的内容的理据性——尤其是从研究工作以及概念依赖关系的角度的理据性,也就是为什么这些内容是值得学习的。具体设计过程,除了课程整体概念地图,就不在这里给出。

LinearAlgebra
图1:《线性代数》主要概念、概念关系、学科大图景(课程目标)。

课程目标:线性代数给描述世界提供了最重要的数学结构,数值线性代数是最重要的数值计算方法。因此,这门课程的知识上的目标是帮助学生建构从集合映射到线性空间的数学概念体系,以及学会做数值线性代数。同时,在本课程在思维方式上的目标是把问题抽象和转化成矩阵和矢量的问题的能力,依赖抽象概念展开思考的能力。注意,大量的对象都可以被抽象为矢量和矩阵以及张量等数学结构。因此,本课程的典型对象尽管从数学上就是矢量、矩阵、张量,但是在应用上,要通过例子展示其普适性和威力。顺便,本课程也会通过应用部分的例子来稍微展示一下线性代数和系统科学学科联系。

按照这个目标所设计的本课程的四个模块是:矢量空间,矩阵论,数值线性代数,线性代数的应用案例。传统的以行列式和行列式的计算,尤其是手动计算,为基本目标的线性代数是完全不能实现上面的目标的。

另外,从教学方法上来讲,本课程采用的教学方法包含理解型学习、以项目为基础的学习、创造体验式学习、讲给别人听(同伴教学法)。这需要学生已经具有或者说能够被培养出来一定的自学能力,愿意投入时间去思考和完成课程项目和作业。大量的阅读材料和研究实例,以及学生在课后对阅读材料和研究实例的整理——制作反映学生理解和思考的概念地图,以及在此基础上完成课程项目。这门课程的缺点是:对学生的理解力要求比较高,对学生的时间投入要求比较高,对学生的学习动机也有要求。对学术感兴趣的学生可以从中学到更多东西。

培养学生的学习能力,帮助学生学会知识的同时学会学科思维方式体会好学科大图景,同时需要学生的时间和思考深度的投入是本课程的特点。如果这些不是你的目标,或者你觉得做不到要求的时间和思维深度,请不要选择本课程

教学内容和学时分配

  • 第零章 课程目标和学习方法(3学时,选修)
    • 0.1 课程基本目标:知识目标和思维方式目标
    • 0.2 理解型学习方法和概念地图
      • 0.2.1 批判性思维和成长型思维
      • 没有经过我自己的理性检验(观察实验或者计算推理)的东西不能成为我下一步思考和认识世界的基础。举例:平面几何(论证中每一个步骤都需要理由,都可能不成立)、伽利略关于“重物落的快”的论证(不是结论对就是对的,或者论据对就是对的,不是大人物说的就是对的,通过替换对象来考察隐藏的逻辑假设以及凸显事物的本质特征)
        成长型思维:做中学、教中学、挑战着学、创造中学、任何时候都可以再进步。

      • 0.2.2 系联性思考
      • 未知联系已知就是理解,构建理解的基础和框架,具有系统性(核心和成长),和逐条记忆检索相反。注意,把联系表达成网络和矩阵之后,还可以分析和计算联系:系联=联系1+联系2+联系3+⋯,从孤立到有联系,从直接联系到间接联系,从个体到整体

      • 0.2.3 学科大图景
      • 一个学科的典型研究对象、典型研究问题、典型思维方式、典型分析方法、和世界还有其他学科的关系。

      • 0.2.2 概念地图和概念地图的制作
    • 0.3 科学、数学与现实的关系
      • 0.3.1数学作为语言
      • 思考的语言,集合、映射的语言的重要性
        举例:“苹果的加法运算”到底是定义在哪一个集合上的运算:苹果的集合、苹果数量的集合、还是幂集

      • 0.3.2 数学作为结构
      • 从事物中抽象出关系,把关系整理成为数学结构,找到一个事物自身最切合的数学结构
        举例:位置坐标存在加法运算吗,还是位移矢量?矢量加法的一般性和举例
        举例:交换律不满足的操作(翻转三角形),矩阵

      • 0.3.3数学建模
      • 给事物的状态,事物的状态的变化——也就是状态上的操作,找最合适的数学结构
        举例:位移的矢量模型,运动物体的质点模型
        举例:最优编码与信息熵:概念是从现实世界里抽象出来的

      • 0.3.4 科学的实用主义和科学的可证伪性
      • 科学为现实提供了可计算的可证伪(但是迄今为止还没有被证伪的)心智模型

      • 0.3.5 归纳与演绎的逻辑
      • 归纳的作用和局限,天下乌鸦一般黑,归纳当做概率性推理

  • 第一章 矢量空间(3学时讲授)
    • 1.1 集合映射
    • 1.2 群和域
    • 1.3线性性和线性空间、线性空间上的算符
    • 1.4 内积、矢量空间和对偶矢量空间
    • 1.5 厄米算符谱定理、算符和矢量的表象理论和Dirac符号
  • 第二章 矩阵论(10学时讲授+1学时习题课)
    • 2.1 矩阵的本征值和本征向量
    • 2.2 矩阵的奇异值分解
    • 2.3矩阵的逆和广义逆
    • 2.4 矩阵的迹和行列式
    • 2.5 Jordan标准型
    • 2.6 矩阵微扰论
    • 2.7 Perron–Frobenius定理
  • 第三章 数值线性代数(3学时讲授+1学时习题课)
    • 3.1 矩阵相乘的Strassen算法
    • 3.2 本征值问题的求解
    • 3.3线性方程的解
    • 3.4 子空间迭代求解
    • 3.5数值线性代数系统
    • Lapack、Petsc、Slepc等求解本征值、奇异值、线性方程的解,并行程序设计

  • 第四章 线性代数应用(8学时讲授+3学时课程项目报告,按照学生情况选学其中几个,其他当做课程项目)
    • 4.1 矢量和量子力学
    • 矢量描述量子系统的状态,矩阵是算符,Green函数和矩阵

    • 4.2 矢量和自然语言处理
    • 矢量表示词汇、句子、段落、知识等语言单位

    • 4.3 矩阵和网络谱理论
    • 网络邻接矩阵和其他矩阵的本征值或者奇异值和网络结构的关系

    • 4.4 矩阵、Markov过程、PageRank算法
    • Perron–Frobenius定理,Markov随机过程,不变分布

    • 4.5 矩阵和投入产出分析
    • 从直接投入产出系数到间接投入产出系数,矩阵微扰论用于投入产出分析

    • 4.6 矩阵和Ising模型
    • Ising模型的转移矩阵求解

    • 4.7 矩阵奇异值分解和主成分分析(PCA)
    • 取少数几个本征矢量或者奇异值矢量的近似

    • 4.8 矩阵微积分和机器学习
    • 4.9 矩阵和非线性动力学
    • 不动点附近的线性稳定性分析

    • 4.10 矩阵和控制论

教材与学习资源

教材:
Sheldon Axler《Linear Algebra Done Right》
吴金闪《系统科学导引》

参考书:
W.I.B. Beveridge, 《The Art of Scientific Investigation》
Karl Popper 《The Logic of Scientific Discovery》
Timothy Gowers,《Mathematics: A Very Short Introduction》
Albert Einstein and Leopold Infeld,《The Evolution of Physics》
Richard Feynman, 《The Character of Physical Law》
Richard Feynman,《The Feynman’s Lectures on Physics, III》
吴金闪《教的更少,学得更多》
吴金闪 《二能级体系上的量子力学》

五、考核方式
课程考核包括以下几项:
(1)作业(50%)
(2)课程项目(10%)
(3)期末闭卷考试(40%)

大纲起草人:吴金闪

光电效应为什么能够证明光的粒子性

光电效应是一个非常著名和有历史意义的实验:在能够真实地用单光子做实验之前,这个实验就逼迫物理学家们用单粒子的视角来看光(当然,后来的进一步研究证明其实把光看成波也能够解释光电效应实验,只需要把电子的部分采用量子力学,可以Wikipedia “光电效应”)。那么,为什么是这样的呢?

这是光电效应的实验装置示意图。两片连着电源的金属板构成一个腔,光照到其中一片金属板上。当光的频率比较合适的时候,就可以测量到电流——意味着有电子从左边的金属板跑到了右边的金属板上。那么,这个电子是从哪里来的呢?这个电流的强度和电压的大小和方向、光的频率和强度有什么关系呢?这样的关系怎么理解呢?
实验发现,对于给定的金属,只有光的频率大于某个值的时候,才会有电流,不管用多强的光来照,也不管什么样的电压。也就是说,单纯改变光的强度或者电压的大小和方向,不会把没有电流的情形变成有电流的情形。如果我们按照经典波来理解光,则光的强度可以看作是介质上振动的幅度的大小。大的强度就意味着大幅度的振动,于是,就会使得电子更容易被从金属中打(激发)出来。为什么改变强度会不起作用呢?

接着,实验还发现,对于能够产生电流的光,如果我们改变电压的大小和方向,则存在着饱和电流和截止电压。饱和电流的意思就是无论我们从正面——也就是帮助电子从一个金属板跑到另一个金属板的情况——怎么加强电压,只要电压大到一定程度,则电流不再增加。在那之前,电流会一直增加。截止电压的意思是,如果我们反过来加电压,也就是阻碍电子从一个金属板跑到另一个,则当电压到达一定大小之后,电流消失。在那之前,电流会逐渐减小。也就是下图的效果。a,b,c对应着不同的光强度。我们先不管。我们仅仅盯住其中一条线来看,例如a。x轴最左边就是截止电压。y轴最上方就是饱和电流。

为什么会出现饱和电流和截止电压呢?饱和电流意味着从金属里面跑出来的电子已经完全都到达对面的金属上面去了,没有浪费。截止电压意味着从金属里面跑出来的电子一个都没有达到对边的金属上面,全都被电压(电场)阻碍了。也就是说,外加电压的改变,不会对跑出来的电子的数量有影响,仅仅改变的是电子是否容易到达对面。

这个时候,我们问,这个截止电压和什么东西有关系呢?给定金属的条件下,截止电压仅仅和光的频率有关系,和光照强度没有关系。实际上,改变光照强度的话,在给定金属和光的频率的条件下,仅仅会改变饱和电流,不能影响截止电压。于是,这个就更加说明了把光的强度看作是振动幅度的大小——这样就会更加容易把电子激发出来,是错的。

当然,正面的解释为什么需要把光子看作是一个个小球才能够理解这个现象是比较难的。不过,顺着这个光的小球的模型来解释这个现象倒是比较容易:光是一个个的小球,其本身的能量状态由其频率所决定,光的不同的强度对于给定频率的光来说表现为单位时间里面通过一个截面的这样的光小球的数量不一样;电子需要依靠从光子那里吸收的能量来从金属里面跑出来。于是,当单个光小球的能量不够让电子跑出来的时候,就没有电流产生。另外,就算小球的能量够,但是,如果加上反响的电压,则电子的能量在运动过程中会逐渐降低,因此,只要反向电压足够大,则其能量在到达另一片金属之前就消耗完毕,则不产生电流。这个足够大的反向电压就是截止电压。相应地,饱和电流的产生,则是因为给定光强度和光频率,单位时间能够产生的电子的总数就是定的,于是,增加正向电压的作用仅仅使得这些电子全都能够跑到另一片金属上,而不能增加跑出来的电子。当然,如果光的强度大,则单位时间内这样的光子多,于是跑出来的电子也会多,于是电流强度大。

这样,通过把光看作是一群小球,每个小球带着一份能量,就解释了光电效应现象,并且还发现,把光看做是介质的振动于是光的强度就是振动的幅度,不能解释光电现象(再一次强调,其实,可以的,只要把电子的运动部分量子话,也就是说,光子量子化电子经典、光经典电子量子化、光和电子都量子化,这三种方式,都可以解释光电效应,但是,光经典电子也经典,这样的模型不能解释光电效应)。

在构造前面的解释的过程中,我们用到了一点电压、电场、电流的知识,但是,更多的是实验和测量(尤其是考察其他因素都不变仅仅变化其中一个因素的时候的实验现象,作对比)、联系和对比、用数学和逻辑来构建想得通的想的明白的模型。很多时候,对科学现象的理解确实依赖于科学知识,但是,最根本的,我们需要的是去问一问为什么,去想一想是不是想得通。

写给《教的更少,学得更多》的读者

当然,首先谢谢你们来看书。电子版可以搜索“吴金闪的书们”。但是,致谢不是这个帖子的意图。

请各位读者在看书的时候,在发现书里面的例子不容易搞明白的时候,来这个“为理解而教和学”公众号,看更多的更容易理解的例子。例如,

平均分就是除法吗,这是口诀吗?
理解型学习一例:逸儿自己学会的乘法除法比大小
为什么不要直接教孩子1+1=2?
生活口诀化,学习口诀化,拿什么口诀对付未来呢?
SB题型式教学法一例:整数除法遇到零添零
机械式学习一例——加减乘除的计算规则,并向题型教育宣战
理解型学习一例:如何求解应用题和数学是什么
理解型学习一例:笔顺、部首还是理据
理解型学习一例——小数乘法
“你好”是“hello”吗,墨水是“ink”吗,“折线统计图”是“折线-统计-图”吗?
折线统计图及其背后的教材编写问题,一
折线统计图及其背后的教材编写问题,二
概念地图制作一例
数学怎么教一例:4个盘子里各放一颗红豆或黑豆的放法的数量
批判性思维一例:Galileo(伽利略)关于重物下落更快的思辨
小学四年级数学概念地图
你能够倒背《史记》如流吗,倒背π呢?
语文理解型学习的例子
从“莫名其妙”的理解看语文学习和教学
语文是什么,教什么,学什么
结构性缩写和意义性缩写
用一个例子来说明语文的“分析阅读”
语文学习中的总结思考和反思
《一种美味》WHWM四问题分析
语文在字的层面的理解型学习
语文在词语层面的理解型学习
数学是什么,教什么,学什么
用数学来做发现、思考和表达——从心儿的一次作业开始
“四舍五入”的机械式学习和理解型学习
为什么用这个计算,为什么这样算
分数除法的理解型学习和教学

当然,看看这个公众号,也有助于明白整体上我们在做什么,背后的理念和思考是什么。
使用概念地图帮助理解型学习的四个层次​

当时书稿写作期间,主要的例子的来源就是我自己的课程。现在,随着孩子的成长,我看了大量的中小学教材,尤其是小学,不同国家和不同版本的教材。同时,也接触了大量的中小学老师校长(我们有一个Teach Less, Learn More工作群。老师们在里面讨论实际教学以及教育理念)。这些老师和校长们贡献了大量的例子。在此,感谢一下这些老师们,还有孩子们。