融合学科的大学教和学

随着机器辅助智能和机器辅助劳动的发展,以后,人类的吃饭问题(基本需求)是容易被满足的——躺着就可以吃饭,生下来就可以开始等死。例如,昨天我和心儿就说起来,以后你的身边都会有一个小助手,可以随时帮你完成各种计算,求解各种已经知道如何求解的题,但是,不会自己提出来合适的问题。比如说,只要问“2+3等于几”,就会给出来答案“5”,并且这样的问题在这个助手看起来并没有比“15的质因数是什么”更复杂。那么,这个时候,心儿的任务就是找到合适的问题来问,把一个问题分解成助手能够解决的问题来问。例如,针对什么样的情况来才真的来问前面的两个问题。也就是说,做有方向性的思考,做分解,做未知的问题和已知的问题的联系,才是人类要完成的事情。如果为了提出(新)问题和解决问题,那么,人类的学习到底怎么学?

今天,我们来主要关注大学,在这个背景下,怎么教和学。其实小学也一样需要考虑这个问题,一样要做翻天覆地的变化。不过,小学这个公众号已经有比较多的讨论。今天,我们主要集中在大学上。

面对的实际问题是不分学科的。一个实际问题的解决可能需要用到很多各不同的学科知识和思维方式、分析方法。于是,相应的学生的学习也应该没有学科的边界。当然,没准通过来自于多个学科的专家的合作,也可以解决很多问题。但是,让每一个学生都学成四不像(当然,这个四不像也可以实际上很像一个传统数学家、传统物理学家),也是很好的选择,具有很大的解决问题的潜力。再说,这些各自不同的四不像也可以合作起来提出和解决问题啊。

但是,四不像,并不是任意生长。要成为四不像,才需要更好地把握一般知识和技能和专业知识和技能的边界,以及这些边界的融合。也就是说,需要放弃把学科作为边界,要融合掉学科的边界(关于这个“融合掉”,一会回来这个主题),但是,要注意一般性知识技能和专业性知识技能的区别和融合。在展开这个讨论之前,先回到学科的边界和融合的问题。

每一个学科都关注自然和社会的一方面,用某个角度来观测和思考自然和社会。每一个学科都有自己的典型研究对象、典型问题、典型分析方法、典型思维方式,以及这个学科和世界以及其他学科的关系。我称这些东西为这个学科的大图景。当然,这个大图景是可以随着学科的发展而有所变化的。但是,没有一个学科特定的思维方式,也就是看待世界的角度,是不可能成为一个学科的。那么,当我们要来学习一个学科的时候,我们首先要把握的就是这个学科的大图景,把这个学科和其他学科,还有和这个世界的混沌状态(各个学科还没有分开的状态)区别开来。于是,学科的边界是非常有必要的,不分开学科就是永远沉浸于混沌之中。

可是,如果仅仅关注在各个学科里面,则,前面提到了,实际问题总是没有学科的限制的。你拿着一把把来自于各个学科的分开的刀子,来解剖世界这个牛,只有逼迫自己学会各种刀,或者组建一个很好的掌握各种刀子的团队才行。但是,在这样的团队里面,那个把问题分解成每一个不同的刀手能够解决的子问题的人就非常非常的重要。其他人都是刀子,都是“机器人助手”,而这个人,需要提出问题、分解问题的人,只能是“人”,具有高度创造性的人。至少迄今为止如此。将来是不是机器智能能够提高到这个程度,不知道。

于是,我们发现,尊重学科边界,学好各自的学习之外,还有一个融合多个学科的必要性。

这个时候,怎么办?简单粗暴的办法就是让每一个人都成为多学科的专家。例如物理学家就是这么悲催,或者幸运:我们当然要学好物理,但是自然界的语言是数学思维的语言也是数学(从思考到模型到计算都是数学),所以我们不得不具有水平相当过得去的数学;解析计算很多时候在实际问题中不够用另外把事物抽象成对象(拥有内部状态变量和外部接口)甚至把问题分解成每一个小小的步骤来完成也是物理学的典型思维方式,所以我们也不得不或者很自然地具有水平相当过得去的计算机科学;物理学还经常自以为自己是自然科学的老大,所以就经常思考一些基于具体科学但是超过具体科学的问题,甚至由于这种学科带来的傲慢(我从来没说这是坏事啊)不得不成为一个很好的传物理学的道的人。那,是不是真的就得要求没一个物理学家都得学会怎么多东西呢?或者反过来,要求每一个研究者,先成为一个物理学家呢?因此,简单粗暴的办法是真的不行的。

那么,能不能在不这么简单粗暴地要求一个学习者什么都学的条件下,还能够达到融合学科边界的效果呢?这就是需要要做好一般性知识技能和专业性知识技能的区别和融合。也就是说,把一部分知识和技能抽取出来当做人人都要学习的来自于多个学科的东西,把另一部分知识和技能当做领域专家才需要学习的东西,并且,在每一个阶段,不断地推进这个一般性和专业性的边界。这也是那个叫做“通识教育”的精神。于是,通识教育的第一步,就是按照一定的原则,把知识和技能分成一般性和专业性,以及相应的阶段。相应的阶段的意思是,例如在高中阶段大约这些知识和技能可以当做一般性的,而在大学本科阶段则更多的知识和技能可以当做一般性的,类似地在研究生、博士、终身学习的不同阶段有一个大概的一般性和专业性的边界。

那么,这样区分的原则是什么,谁来做这个区分,区分的结果大概怎样?这个原则又需要回到学科的边界和融合的问题,回到学科大图景。我先给出来一个区分完了的答案,一会再讨论区分的原则等其他问题:比较基础的学科的大图景属于早期层次的一般性技能,更加专门的学科的大图景属于稍微晚点的阶段的一般性技能;同时,任何的知识,如果不是为了体现一般性技能,则永远都属于专业性知识。

为什么这样来区分?前面提到了,具体如何用刀子,具体如何计算“2+3”都是有“机器辅助(可以实际上就是人)”帮你完成的,只有提出问题和拆分问题把问题转化成操作,才是真的需要具有创造性的人来完成的。因此,一个学习者真的需要理解的就是没把刀子的各自的特点,而且是深刻地体会到这个特点,也就是深刻地体会到每一个学科的大图景——研究什么对象、什么问题、如何分析、思考模式或者说学科精神,以及这个学科如何服务于其他学科和这个世界。从小学到博士的教育,都要帮助学习者体会好这个学科大图景。当然,没有具体研究工作、理论体系、具体知识当做媒介,学习者是不可能体会好这个学科的大图景的。因此,具体知识还需要按照如何体现学科大图景的方式来组织好。例如,在物理学里面要从做具体的实验中来学会用实验的方式来探索世界,甚至和数学将结合来体会如何运用数学结构来描述这个世界。具体的例子和具体的知识的选择万万种,但是,都是为了体现物理学的典型思维方式的。

每一个学科都需要这样来做好知识的重新梳理,一切围绕着学科大图景来组织。

顺便,更多的关于物理学的学科大图景、数学的学科大图景可以去翻翻“吴金闪的书们”上面的那些书——《系统科学》、《量子力学》、《教的更少》、《小学数学》。

一旦做好了这个不同层次的区分,有什么用?以此为基础,在学习的不同阶段,开展内容不同但是原则相同的通识教育。每一个阶段,我们都是为了学生更好地理解一系列学科的学科大图景,只不过所领会的大图景的层次可能不一样,所要求的学科可能不一样,所用的当做媒介的具体知识可能不一样,但是,原则和目的是一模一样的。

至于前面提到的问题,谁来做,就不好回答了。我在我所教过的所有的课程里面,都在做这个实践。我还在尽量地影响我周围的人来做这个实践。但是,真的,真个可能需要有组织地来实现,而不是通过我这个个人的经验和魅力。

更具体一点,我来举个例子:把这样的——以“学科大图景”为目标的通识教育——体系用于系统科学、物理学这个学科或者其中的一门课的建设。其实,用于其他学科和其他课程也是一样的。

首先,我们要把这两个学科的大图景精炼好。例如,系统科学就是用相互联系的视角去分析具有系统性的问题。具体的什么是相互联系的视角、什么是系统性的问题、这样来分析的话典型方法是什么,我就暂时不展开了,以后没准可以展开,或者请去看《系统科学导引》和《量子力学》。精练好了之后,我们把学科的知识和研究工作的例子,都围绕着这些典型对象、问题、分析方法、思维方式组织好。接着,我们再来看 ,其中的哪一些大图景和例子是可以并且值得放到前期来让学习者体会的,哪一些应该放在后期的。例如,我们会发现,力学的世界观(事物状态的描述、状态的变化、状态变化的原因)、用数学结构来描述世界(例如用矢量来描述位置和速度)、用实验来促进和检验思考这些物理学的大图景和相应的知识和例子,是值得并且能够在很早的阶段,例如小学就可以渗透的,时空观以及对时空观还有时空和物体状态的关系的思考没准需要稍微晚一点,高中或者大学。有了这样的对学科的大图景和知识的分析,才能够真的做好通识教育。于是,物理学这个学科的一部分大图景和知识就应该成为比较早起并且比较普适的学习内容,不管你将来想学什么学科。

顺便,通识教育不是肤浅教育,不是了解性教育,不是不需要思考只需要听故事的教育,而是不以具体学科的高深知识为目的,但是以必要的学科的大图景为目的的,为了学生来了解这些个学科而开设的,需要做大量的更加深刻的思考的教育。

有了内容上的梳理,实际课程的开设怎么办?这里,我的讨论主要集中在本科和以上阶段。在大学本科阶段,或者本科前两年,要做好普适性大的学科的通识教育,例如数学、物理学、学习方法、分析性阅读和写作、计算机科学(典型编程思想例如从现实到对象的抽象和过程变成的具体化步骤化思考、算法、具体编程实现的技能)等。注意,这个阶段的数学可能知识内容还是和现有的课程一样——微积分和矩阵,但是学习的目的不是这些知识而是数学学科的大图景。同样,物理没准也还是力学,但是目的不是Newton定律这些知识,而是物理学的学科大图景。

对于系统科学这样的交叉科学,就可以允许学生去选择来自于数学系的数学,来自于物理系的物理学。可以是数学专业的数学分析,也可以是给外专业的大学数学,让学生自己选,只要这些课程是为了理解数学的学科大图景的,仅仅在知识要求上不一样。可以是物理专业的力学,也可以是给外专业的大学物理,让学生自己选,只要这些课程是为了理解物理学的学科大图景的,仅仅在知识要求上不一样。

有了这个大约五六门以学科大图景为目标的普适基础课,有了学会学习和思考,有了分析性阅读和写作,有了计算机,就可以开设各自学科的学科核心课程和学科方向导论课。例如,物理学自己,也要在前面的基础上面开设类似于现在四大力学的学科核心基础课,同样也是强调学科大图景,只不过具体的知识和计算,可以稍微复杂一点点了而已。在系统科学而言,就需要开始《系统科学概论》这个层次的课程了。这样的学科核心基础课,也要按照通识课程的理念,主要为了帮助学习者体会学科大图景。在这个基础上的学科方向导论课,则可以在一个比较小的子领域内来做这个子领域的大图景——典型对象、问题、分析方法、思维方式、在整个学科甚至整个世界中的地位。

这个体系下面,各个专业,在普适基础课的基础上,只不过需要建设几门学科核心基础课,几门学科方向导论课。其课程数量是非常少的。但是,其实,建设任务是相当重的,一切需要围绕这各自阶段的学科大图景,重新来梳理和选择具体知识。

类似地,在研究生教育甚至终身学习阶段,一方面,在本身学科上,还需要有更深刻的例子来体现学科大图景;另一方面,可以考虑在其他学科上,也有一些对这些学科的大图景的了解。同时,随着研究工作的开展,在本身学科(或者其他学科)的具体知识和具体分析计算上,也会有更深刻的体会,从而促进更好地理解学科大图景。

这个帖子实在长又长,总结一下:学习每一个学科都要充分体会到这个学科的大图景搞清楚这个学科和其他学科的边界;但是,同时在清楚边界之后,要融合这些边界,还是通过以学科大图景为学习目标的方式;按照学科大图景的原则把学科和学科知识技能分成适合不同学习阶段的普适性基础课程、学科基础课程和学科方向导论课,开展真正的不肤浅的通识教育;学科教育也将变成各专业一起建设的普适性基础、极少量的学科核心基础课、一些学科方向导论课。

更进一步,实际上,课程都是一个没有必要有的概念,只要一堆紧密结合在一起的概念,通过概念之间的关系相互联系在一起,就可以了。

顺便,这样的把每一个东西做拆分,搞清楚这些东西各自的特点之后,重新在整合起来的思想,就是系统科学的思想。不是说,整体论比还原论高明,而是,拆分也就是还原,需要和整合,不断地分别展开和再次结合,交替进行。没有还原的整体论是伪科学,没有整合的还原论则会丧失方向,看不到大图景。先分开,则融合才是真融合,不分开就融合那就混沌。

因此,在这里,也再一次推荐人人都来学一学系统科学,例如通过我的《系统科学导引》课程或者教材。还推荐来学习一下我的《学会学习和思考》课程,或者书《教的更少,学得更多》