Learned something new about Bayesian formula last night and learned the hard way

Bayesian formula,
[P(A|B)=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|\bar{A})P(\bar{A})}]
is conceptually straightforward, but amazingly useful in statistics. It turns calculation of (P(A|B)) into finding out (P(B|A)) by simply making use of the rule of total probability,
[P(A\cap B) = P(A|B)P(B) = P(B|A)P(A)]
and
[P(A) = P(A\cap B) + P(A\cap \bar{B}). ]

This seems rather trivial to me. Here comes the surprising part. Let us now add another set (C) in the following way,
[P\left(A|B\right) = P\left(\left(A|C\right)|B\right)P\left(C|B\right) + P\left(\left(A|\bar{C}\right)|B\right)P\left(\bar{C}|B\right), \hspace{2cm} (1)]
or in this way,
[P\left(A|B\right) = P\left(\left(A|B\right)|C\right)P\left(C\right) + P\left(\left(A|B\right)|\bar{C}\right)P\left(\bar{C}\right). \hspace{2cm} (2)]

Now let us ask which one of the above two formulae is the proper one, or both, or none?

It is easy to verify the first one: Assuming
[P\left(\left(A|C\right)|B\right) = P\left(A|\left(C,B\right)\right) = \frac{A\cap B \cap C}{B \cap C}, \hspace{2cm} (3)]
then right-hand side of Equ(1) becomes
[\frac{A\cap B \cap C}{B \cap C}\frac{B\cap C}{B} + \frac{A\cap B \cap \bar{C}}{B \cap \bar{C}}\frac{B\cap \bar{C}}{B} = \frac{A\cap B \cap C}{B} + \frac{A\cap B \cap \bar{C}}{B} = \frac{A\cap B}{B}, \hspace{1cm} (4)]
which is exactly the left-hand side of Equ(1).

Verifying Equ(2) is however not easy. If the assumption in Equ(3) is right, then Equ(2) becomes
[\frac{A\cap B \cap C}{B \cap C}\frac{C}{\Omega} + \frac{A\cap B \cap \bar{C}}{B \cap \bar{C}}\frac{\bar{C}}{\Omega}. \hspace{1cm} (4)]
I can see no clue that this expression should be (\frac{A\cap B}{B}).

However, if (P\left(A|B\right)) is the probability of a set of events, then the second one should be correct too. So what is the problem? It seems to me that when discussing (P\left(A|B\right)), we have implicitly limited the whole set, which originally is (\Omega), to be (B), therefore, all the expressions derived from there should have carried the condition (B) forever. So lesson one: Keeping the condition (B) as the condition for all other events. Therefore, Equ(1), not Equ(2), should be used in our case.

Another lesson learned is that conditional probability is a tricky concept and one has to deal it with extra attention.

神书推荐(Recommending The Princeton Companion to Mathematics)

最近读了一点点《普林斯顿数学指南》(The Princeton Companion to Mathematics),实在是精品,強烈推荐每一个数学家、物理学家、数学和物理系的学生,都看一看。

这本书把数学的主要分支的研究问题、主要思想、学习材料都做了介绍,而且是深入浅出,又不牺牲准确性、科学性的介绍。

这样的书,高中生、本科生、研究生、教授读了以后都会有收获。

什么时候,物理学也应该整出这样一本书来,系统科学也是。

Recently, I found a great book on mathematics, The Princeton Companion to Mathematics. It is like a guide or a big-picture introduction to almost every subfields of mathematics, without losing any accuracy and attractiveness.

All mathematicians, physicists, and students in math, physics, or even other fields related to appplied math, should read at least certain parts of this great book.

I think physicists should produce a similar book on physics too. Or maybe every discpline should have a simiar one.

ownCloud管理多个目录

我们自己的ownCloud服务器已经能够使用。一部分老师有同步多个目录的需求,而且不希望单独设立一个叫做owncloud的目录(浪费本地硬盘空间)。其实这些功能ownCloud都能实现。

下载并安装客户端。
然后,在客户端第一次启动之后,不要直接点下一步,注意,选择目标目录(默认是建立一个owncloud目录,我们不需要这个),然后在下面的别名位置上写上你给这个目录的名字,不要留着默认的owncloud。

接着,点增加目录,就可以把多个目录加进去了。

系统科学基础课程的教材草稿

最近正在写系统科学基础的教材,欢迎大家提意见。我会一直更新这个工作版本

目前,第二部分,系统科学的数学物理基础已经基本完成,除了随机过程。

第一部分,系统科学导论,还需要很大的功夫,找例子,分类,复述,写评论。
第三部分,系统科学的基础理论,非线性动力学部分也基本完成。复杂网络没有动笔,但也不是难事。其他的部分还需要一些时间。
第四部分,计算附录以及概念地图学习方法,应该也花不了太多时间。