“Teach Less, Learn More”课程设计举例:量子力学

Teach Less, Learn More体系的原则:

  1. 教学的一般目的:教个学生学习的方法、提高学生对学科的认识和感情,为学生准备进一步自主学习的基础。
  2. 课程教学的具体目标决定课程的内容的选择和教学的实施。
  3. 关注学科的基本面貌,主要研究问题、典型思考和研究的方法。
  4. 所需要教的东西越少越好,实现目的的前提下。
  5. 概念地图在明确学科基本面貌、选择教什么、确定怎么教的方面有帮助。
  6. 老师比学生强的地方在于会看路(理解事物之间联系的深度和广度)或者看过路,不在于知识的多少。
  7. 具体教学中,要让学生知其然,知其所以然,知其所以所以然。这些然要尽量核心尽量少,这些然都表现为概念地图上的联系。

做课程设计,我们必须考虑根本目的的问题——目的决定了教学内容和方法。因此,《量子力学》教学的根本目的是什么呢,尤其物理知识之外的目标?

首先,量子的世界太神奇了—— 完全就是另外一个世界啊,不学人生不完整。量子的世界里面你会学会用概率的视角来看问题,而且还要被迫超越概率的视角。在经典的世界里面,概率仅仅是一个工具——在信息不完全的情况下的一种技术描述手段。在量子的世界里面,我们会看到这个技术描述手段所带来的理解上的问题和挑战,以及这个技术手段的必要性。甚至,我们还会看到,用概率也不足以描述量子的世界。量子力学是一扇门,打开你用不同的眼光看世界的一扇门。

其次,从量子力学中数学结构和物理现象的关系上,你能够更加深刻地体会什么是科学。从量子力学能够体会到物理学或者说整个科学就是给现实世界寻找合适的数学结构,不管这样的结构多么不符合来自于经典世界经验的直觉。

再次,从量子力学的建立的历史——科学家的逻辑和理论意义上的历史,不一定是时间顺序上的历史——我们能够体验到科学研究的典范,从不可理解的现象,到凑公式,到理念上的突破,到数学和思想上的真正的突破,到被这个突破的理解问题所困扰。

接着,在哲学上,学习量子力学能够让我们避免“空谈”:观念上的差别必须实验可测,才有意义。

最后,关于量子力学本身,我们要学习到以下三点:一、状态是矢量,可以加起来。与经典的不一样。在经典世界,过程的结果的量和物的量可以相加,但是过程本身物本身不能相加。量子力学物本身可以相加,过程可以相加。二、测量是一个问题。经典随机客体的测量也是一个问题。三、力学的图景——状态的描述、变化、变化的原因。

有了目标,在选择之前,我们还必须搞清楚“量子力学的大图景”——所有的概念构成的知识网络,然后在这个网络上按照前面的目标来决定教什么和怎么教。

量子力学的知识网络
如果不够清楚,可以从点击查看原图

选择好内容之后,还需要考虑每一部分的知识网络——构建这个问题的概念地图,然后以此为基础引领学生思考。具体教学环节,一定要不断提醒自己,老师我的目的是引领、提示和启发学生你思考,不是给你答案,而且这个思考要有深度,有组织性(依靠背后的概念地图)。教学环节还要注意,我们的目的不是要学生记住概念地图,因此大部分时候老师做出来的图是不给学生看的。

需要引领和提示的典型的部分举例:

  1. 双缝实验经典解释的困难
  2. 双光路实验经典解释的困难
  3. 经典和量子测量的区别和联系
  4. 经典和量子克隆的区别和联系
  5. 经典状态的密度矩阵语言

这里把在给学生看的图也亮出来看看。
如果不够清楚,可以从点击查看原图

最后,要布置一定量的作业,一定量的课后阅读,几张核心问题理解的概念地图(重复做很多次),一定量的课程项目,让学生自己学起来。这些内容见下面的教材和讲稿。

按照这个教什么和怎么教,编写量子力学教材、课堂上用的量子力学讲义

从以上例子做一个Teach Less, Learn More 体系的总结

  1. 熟悉这个体系的基本理念和技术(见本文开头部分)
  2. 对具体学科和具体课程,考虑受众情况,提出具体的目标,包含知识、情感、思维几个方面
  3. 对具体学科和具体课程制作概念地图
  4. 从概念地图里面按照理念、目的和原则来选择内容和思考如何教学
  5. 把课程内容分解成多个子问题来实现引领思考的目的
  6. 作业和项目是课程的非常重要的组成部分,也是促进学生自主学习的手段

以上各个子问题是如何反映主要目的和基本原则的:

  1. 双缝干涉实验中经典解释的困难使得我们思考可能的超越经典的理论,我们不能问粒子到底都那一条路的问题了,反映量子力学是“通往另一个世界的门”,也反映什么是科学——现象与数学模型的关系。
  2. 光子过哪一条光路的实验也是同样的目的。
  3. 经典和量子测量的区别和联系着眼于比较几率叠加和状态叠加原理的比较。这个状态叠加原理是量子理论的核心。理解量子测量是不容易的。
  4. 经典和量子克隆的区别也是这两个不同的叠加性的表现。这个也有助于理解量子测量的问题所在。以上两条关于测量的也表现了“观念上的差别必须实验可测,才有意义”。
  5. 经典状态的密度矩阵的语言是为了从经典到量子做一个铺垫,也是为了能够更好地对比经典和量子。

最后这部分说明,其实是需要学生自己体会出来的,是所以所以然的层次。

有人看完这个设计以后说我的设计意图就是要把课程内容变难,变多。这个是完全错误的。可惜我现在手上没有简单的能够让中小学老师能够看懂的例子。如果看这个东西的人,懂得一点点量子力学,就会发现,在具体内容和所要求的数学计算上,我的这个设计比传统的要少和低很多很多。但是,在问题的选取上,选择了量子力学和经典力学的不同这个最核心的问题,然后,就这个点,展开了非常深入的讨论。再一次强调这个设计的原则:教得少,教得深刻(有联系,多思考,多为什么),有目的(每一个选来教的内容都有明确的教学的目的)。

下次找一个更能够让人看明白的例子来表现这个设计原则。

推荐Statistics: Concepts and Controversies by David S. Moore and William Notz

有中文版。

Statistics: Concepts and Controversies by David S. Moore and William Notz, which aims at teaching the spirit and ideas of statistics to students in all fields, strongly recommended. Every subject, if it is an essential major subject to society and civilization, should be possible to be taught as a general course to all students. I am working on teaching physics, math and system science, especially the later is one of my on-going effort, as such general courses.

系统科学概论,也应该写成这个风格和水平,努力中。

2012年春季《临界现象与复杂性》课程

这门课一直在系统这边的博士生的培养计划之中。一直没有开过。这学期我打算开起来。已经在选课系统中,希望大家感兴趣的来听听。博士生好像不得不上这门课了,硕士生(尤其是硕士生)我强烈推荐你来试试。

大致的内容,我打算按照《复杂性研究中的数学物理方法》的思路来组织。这样比《临界现象与复杂性》更一般一些,当然临界现象部分还是要讲的。主要的想法是:通过这门课把受教育背景各不相同的学生放在同样的起点上,为系统科学(复杂性、物理学、社会系统、经济系统)以后的研究工作做准备。基本上本科阶段的数学物理课程都会涉及(当然《数学分析》的内容就默认大家都了解)。然后每一门课,我只会讲最最基本的内容,基本上5-10小时之内给大家一个图像,帮大家入门。课后大家通过自主阅读与练习来达到真正学会的目的。

你来,我应该能保证,你会上一个层次,会得到对这些学科的不一样的体会。但是,我需要你保证完成作业,并尽可能地主动阅读我留下的或者推荐的教材、文献。

提纲:
1、线性代数与数值线性代数:矩阵、本征值与本征向量、线性变化、矢量空间、Blas与Lapack
2、概率论:古典概型、简单事件、复合事件、频率与概率、有限事件空间上的概率论,概率三元体,概率论的矩阵表示,Monte Carlo方法简介
3、分析力学:状态与状态空间、动力学过程、Hamilton方程、Lagrange方程
4、量子力学:二维系统的量子力学,态矢量、算符、Schroedinger方程、测量,密度矩阵
5、统计力学:状态空间、系综理论、配分函数,相变,Metropolis方法,量子统计初步
**********一学期的量,这次就开这么多,下次把《系统理论基础》跟这门课合起来开,讲两学期*************************
6、非线性动力学:动力系统、简单稳定性分析、不同定性行为分类并举例,混沌举例
7、高等统计力学:相变、重整化群、有限大小标度、临界现象与临界指数,产生湮灭算符形式的量子统计入门
8、高等量子力学:Hibert空间的矢量和算符,测量问题与量子力学基础,产生湮灭算符形式的量子力学

我的信念是学哪一门就要学会象那一门的专业学生一样地来思考问题。具体的知识、技巧可能掌握的程度不一样,但是有哪一些基本问题、如何处理,也就是大图景和品味是一样的。有很多的老师和学生可能不同意我这个观点。不过,不妨来试试,给我和你自己一个机会,没准我们能够成功呢。

这第一轮的课,允许我把主要时间放在把这些课程的基本内容做成一个整体。以后,我会把实际研究工作的例子加入进来,放在课程中合适的地方。

课程的组织方式大概按照:导论(背景,相关研究工作简介,参考书与文献介绍),核心内容讲解与讨论,课后作业,习题课(讲解习题以及个别的例题)。考核方式:习题(40%),大作业或者课程论文(20%),期末考试(40%)。课后作业可以通过小组讨论来解答,但是答案必须是自己的,类似的答案(例如错别字一样、相同的加减号错误、相同的常系数错误等)视作抄袭,大作业或者课程论文的任何部分(多于一句话)网上查得到,视作抄袭。抄袭者的成绩一概不及格(59/100)。

另外,这学期有两个与本课程相关的专题课(分别是《随机过程导论》与《平衡与非平衡统计物理学》)将由国际知名学者来讲授(分别为Peter Drummand,量子光学领域的牛人以及Birger Bergersen,那本比较流行的平衡态统计物理学的作者)。他们会过来用英文讲课,时间大约是5、6月份。

要不要我也用英文讲?那样的话,大家都要辛苦更多,我也要花更多的精力来准备。要不,下一轮,我再用英文讲授吧。关键是我恐怕没这么多时间来准备。