

UNIVERSITÀ POLITECNICA DELLE MARCHE

The Role of Concept Maps in the Improvement of the Teaching and Learning Process

Liberato Cardellini
I.cardellini@univpm.it Ancona, Italy

Overview

Introduction

The PROFILES project

\square
\square To score or not to score

Gifted education
Conclusions

PISA 2015 Results

EXCELLENCE AND EQUITY IN EDUCATION
VOLUMEI

Programme for

International

 StudentAssessment

직OECD

OECD (2015), Universal Basic Skills

FIGURE 2.1 KNOWLEDGE CAPITAL AND ECONOMIC GROWTH RATES ACROSS COUNTRIES

Science education in Europe

The Rocard's report (2007)

 "students have a perception of science education as irrelevant and difficult" (Rocard et al., 2007, p. 9).Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H. \& Hemmo, V. (2007). Science Education Now: A Renewed Pedagogy for the Future of Europe. Brussels: Directorate General for Research, Science, Economy and Society.

The Rocard's report (2007)

 It recommends using Inquiry Based Science Education (IBSE) to strengthen scientific education in Europe

Andrea Schleicher, one of the architects of the OECD's Pisa examination, says research shows there is a high demand for problem solvers, effective communicators and creative thinkers

Christopher Pike / The National: January 6, 2014

Science education is valued

Some countries pay a lot of

 attention in the education of gifted students

Lots of books ...

Susan A. Ambrose
Michaol W, Bridges Michele DiPietro
Marsha C. Lowett Marie K. Norman

Fofieworo gy pucya go E. MaYEk

VISIBLE LEARNING
A SYNTHESIS OF OVER
800 META-ANALYSES
RELATINGTO ACHIEVEMENT

... and studies

What the best college teachers do

1. Know their subject matter extremely well
2. Prepare for their teaching sessions seriously
3. Expect more from students
4. Create a natural critical learning environment
5. Treat students fairly
6. Check progress and evaluate efforts

The PROFILES project

Professional Reflection-Oriented Focus on Inquiry Learning and Education through Science

Partners in the PROFILES project

PROFILES in Italy

Professional development

The Continuous Professional

 Development (CPD) of teachers, together with a kind of teaching oriented to the reflection, in essence, represents the focus of the PROFILES project
CPD in Italy

Three didactic methods have formed the backbone of the CPD in Italy:

Cooperative Learning
■ The use of Summaries and Concept Mapping - Problem Solving

A demanding environment

Concept Maps

Cooperative Learning

Problem Solving

\square
\square

CPD in Italy

The use of these methods was made even more productive by means of two teaching factors rarely used in Italy:

- The Argumentation

Visible Learning and Reasoning

Visible Learning and Reasoning

Visible Learning and Reasoning

Visible Learning and Reasoning

Ron Ritchhart • Mark Church • Karin Morrison
FOREWORD BY DAVID PERKINS

ITC Marshall Cavendish Education

VISIBLE THINKING in Mathematics

Making Mathematics Visual

Visible Learning and Reasoning

Maroline Afamasaga-Fuatấ
 Pofitor
 Concept Mapping in Mathematics

Research into Practice

Chapter 1

The Development and Evolution of the Concept Mapping Tool Leading to a New Model for Mathematics Education

Joseph D. Novak and Alberto J. Cañas

Visible Learning

PROFILES in nursery school

Degradation and environmental deterioration

Degradation and environmental deterioration

PROFILES in elementary schools

Kneaded, Cooked and Eaten

Two classes are involved: primary three and primary five

A very ambitious project was planned

Kneaded, Cooked and Eaten

The project consisted in:
the study of the pack
the selection of material for disposal
the analysis of the barcode
the search of the recipe
the informed purchase of ingredients

Kneaded, Cooked and Eaten

the work in the school kitchen
the calculation of the cost of production
discussion of the promotional campaign
the realization of the packaging
the preparation of the presentation to the parents and the school

Visible thinking

LEEVITO 3 lente 1,45 も

Visible thinking

UOVA 6 a 190 も

$\frac{1}{2}$

maxien forer 2013
a LOSTANO I NOSTRI BISCOTTI
7x dear met 500 .

Concept map

Martidì 29 Gamnow 2013 Dservarsisan sil decanamia Il desanomio i la tabiela alla meltiplicasume fatta con rettangolie equadrate

* Sille dagomale nosa hrovo tilt i prostote dipte
is ugevel buesti seno tatte \& famma pradrata
Percio
1-4.-9-16-25-36.49-64-81-100 x chamano numerw pradrati.

I due rettangoli sone cangruet (a se licitade * el sitagleospango conberciano pertettaments).

Cooperative learning
r^{*} RE S PONS SABILE \rightarrow DAULLLE
2^{\prime} DISEqNATOREA \Rightarrow ETMAN
3° DISEGN ATORE \rightarrow MATTAA
GRUPPO:
Segretarlo *Gbcomo
NOME: C iocchmi
SCADENDA: 12.06. 13 12:06
PESO: 200g
BISCOTTI FROLLINI CON SCAGLIE
DI CIOCCOLATO FONDEDTE E SCORZA
D'ARANCIA. INGREDIENT:
FARWA DI FRUMENTO, ZUCCHERO GRANELA OI GIOCCOLATO FONDCNTE 15% (ZULCHEAG PASTA DI CACAO, BURAO OI CALAO, EMULSIOLAUTE: LCCITINA DI SOIA AROHA: VANIGLLA), GRASSO VEGETALE NON IDROGENATO, SCORZE DI ARANCIA CANDITA 6% (SLRAPFO OI GLUCOSIO-FRUTTOSIO, SCORZE DARANCIA. SACCAROSIO, AROMI NATURAL), BURRO, UOVA, MICLE, SALC, AGENTI HEVITANTI (CAABOHATO AGDO OI SODIO, TARTRATO, MONO POTASSICO), AROMI.

The packaging

THE CHARLIE'S CANDIES

For his birthday Charlie has received a gift box with $\mathbf{2 8}$ candies

Charlie is a very greedy baby and every day eats twice the previous day and in three days has eaten all
How many candies Charlie ate in each day?

Explain how you found out

Fifth grade pupil

2° giorno	2° giorno	3° giorno
1° pornte		
2^{a} parte	3^{a} parte	

in 3 giorm $=7$ parti (cive' 28 caramelle)

$$
\begin{aligned}
& 1^{\circ} \text { giorno }=28: 7=4 \\
& 2^{\circ} \text { gionito }=4 \times 2=8 \\
& 3^{\circ} \text { giornio }=4 \times 4=16
\end{aligned}
$$

PROFILES in high schools

PROFILES in high schools

La

Chemistry and Biology ... What a Pizza!!!

Daniela Bianchini, Francesca Maria Foresi
I.I.S. Corridoni-Campana, Osimo; Italy

Background

With the aim of increasing the interest, motivation, and active involvement of the students in the processes of learning and studying, a didactic module suitable for learning important concepts in Biology and Chemistry has been developed

Background

Through the module, the idea was to introduce the students to the study of biology and chemistry by means of a daily life phenomena

Pizza is a food very popular among teenagers and featuring strongly, together with pasta dishes, in Italian gastronomy

Scientific Goals

Scientifically, this grade 10 (second year of secondary school) science (biology and chemistry) module is about fermentation and chemical reactions

Educational goals

increase students' motivation

increase self-esteem

increase social abilities

leadership, and communication skills

group and experimental work

Continua...

Didactic objectives

To use the inquiry scientific method to study a phenomenon (the leavening)

To identify the variables that influence the success of a complex phenomenon

To study the effect of some parameters taking constant other variables

Didactic objectives

(such as the temperature, the sugar, the change of the ingredients)

To identify the most suitable experimental tests to verify the initial hypothesis

Volume di CO2 prodotta

In the kitchen

The work was carried out in laboratories of chemistry and science, and in a kitchen for cooking pizza

Three classes were involved and, with reference to the educational needs related to ministerial curricula, emphasis to biological/biochemical aspects - and chemical kinetic was given

Cmaps \& Summaries

 Sxopanixumpla.
poserve sempuncate

\sim eutmo $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

M CoHz Promono (âtine lineome)

elettrochimica

 E, --

Ex on

$$
\begin{aligned}
& \text { Ind } 4 \times
\end{aligned}
$$

Geayetrias deller Molecter

 arro inean

\qquad

\qquad

$$
\frac{b}{\sigma} \frac{d}{6}
$$

cesan oex

Nenterio or.s.ent

"IDROCAPBURI" (suemen)

From the same «artist»

equilibri chimici

Sono miscele ongegence iquide se sono miacele di un Liquido can un salido o un gas, lliquido viere detto souvente, mentre 1 zolido o 1 gas surro. Nel casp di mícele liquido-liquido, gerieral meate quello pre sente in magglor quantita viene cossiderato come La composizione di una soluzione si esprime.
attraverso la. concentaazione deta solizzlone.

esperienza di torriceu

 Torricell, realizso λ primo barametro

TEORIA CINETICA DEI GAS
Guesta teoria stabilisce de la velocità media dere mole. cote oumenta at diminuire detala lors masso. La velocitad, ume particolare particella cambia continuamente a coura
dent elerato numero dicolisisioni' e at consegaente som dent "derato numero di colisisioni et at consegaente kam

 -

LEGGE Di DALTON $\left(R=x_{i} \cdot P\right)$

 $P_{-} P_{i}+P_{i}+P_{3}+P_{j}=\sum_{i} P_{i}$ T1 mopporto Py Ryin ($x_{i}=$ Reazone Moures

LEGGi Di BOYie, ehrries EGPY-lussac

Ebmbinando le leggi di Boyle c Charles si ha la
Spapzionée oi stofo oci ARs $P \cdot V=n \cdot R \cdot T$
dove R è la costante univerrale dei gas e vale $\left.\right|^{5}$
Dol'equazione distato dei gas si puo' calsolare A. $/ / \mathrm{Y}=\mathrm{P}(\mathrm{PM}) / R T$ 1

SINTESI DELL' AMMONIACA

FRAZIONE MOLARE
 MOLARITAे

$X=\frac{\text { numero di moli solato }}{\text { wumero di. nolli totali }}$
$M=\frac{\text { novero di mol solutos }}{\text { nimero Mer soluzione }}$

MOLALITA $m=\frac{\text { wamen' di moli solusto }}{\text { wimers chilogranni sowente. }}$

SOLIDI NEI Llquidi

a- La presiore di vapore izzero, quindi $P=X_{A} \cdot P_{A}^{\circ}+X_{B}-P_{B}^{\circ}$

$$
X_{B}=\frac{P_{B}^{\circ}-P_{A}}{P_{i}^{2}}
$$

b- Ii albassa ipunto di congelomento
$\Delta T_{0}=l_{c} \cdot m$
(ma molalitió, $k_{e}=$ costante eriotcoptioa)
c-12 innalza I punto di ebolizzione
$\Delta T_{e}=k_{e} \cdot m$
($K_{e}=$ costante ebullisscopica)

d- Il pasenggio di colvente attroverso uno membrone do une tow uzione piuid ditulto
ad uno pis eoncentraso prende is rome di osmos.
$\pi \cdot V=n \cdot R \cdot T$ (π-fREssione OSMDTice)

Seno quei solatic che armestono la.

$\xrightarrow{\text { a. }} \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
Serico D . $\mathrm{COOW} \mathrm{Cl} \mathrm{Cl} 500^{-}+\mathrm{H}^{+}$

ropporto tro 1 nimeto di modede.
dissoctiate e I momero di molecole.
guli nos Eumpoun ($\alpha=0$)

4 -concentiazion
la solveilutà dipende da
1-Natuca solvest
2-Natra soluto
2-Nemperatura
4-Aressione.

Liquidi NEI Liquidi

 (A) di'un componentle. A in ana noluzion - data dal prodate dele predione ac lo frazione molare $\left(K_{A}\right)$ ded componenteA
nella soluzione.
$P_{A}=X_{A} \cdot P_{A}^{i} \quad P_{B}=X_{A} \cdot P_{B}^{\circ}$
$P=X_{A} \cdot P_{A}^{0}+X_{B} \cdot P_{B}^{0}$
$E n, B$ \& paid volatile di $A \Rightarrow F_{B}>P_{A}$

Diagranna Kobars ok una soluT* tomperatura didellilcicere di A purbe. To $=$ temperatura
di eostiziceedi B puro. di eholizizaed B Buro. quide. s ur curit ai supore. $a '=$ temposizione del vopere.

E ia trasformazione di un liguido in FFuata come mezao did puriticazome. Fusta come mezzo de purificazione te dae componenti (con differena

SOLIDI NEI SOLIDI Nei sistemi a dise componenti in equilibrio soside- liequido, i campo di concentraziones
$\cos ^{2}$

ANAKIS: TERMICR viene usata per ricarose i dio
grammi di stato grommi di stato delle
wiche

TEORIA FTOMICA
DRLLE LEGGA DELA CHINICA

A study on

Scoring Concept Maps

Voti 2009-2010												\mathbf{R}	30	24	167	223	18	14	27		14
Nome	$\begin{array}{\|l} \mathrm{M} \\ \mathrm{R} \end{array}$	$\begin{gathered} 1^{\circ} \\ \text { parz. } \\ \hline \end{gathered}$	$\begin{gathered} 2^{\circ} \\ \text { parz } \end{gathered}$	$\begin{aligned} & \text { Pro } \\ & \text { bls } \end{aligned}$	$\begin{aligned} & \text { MS } \\ & \text { LQ } \end{aligned}$	$\begin{aligned} & \text { GA } \\ & \text { LT } \end{aligned}$	$\begin{aligned} & \mathrm{FI} \\ & \text { Gs } \end{aligned}$	Voto	Mappe	Sunti	$1 \mp$	R	30 30	25	116	236	23	17 9	30 L 30	20	
												R	30	21	114	217	23	18	26	16	
	M	20	29	77	159	20	13	24		16			27	20	271	184	19	16	24		25
: $\#$	M	23	27	44	214	18	16	27		14		R	12	21/2	82	189			18		18
	R	15	30	61	211			20		20		M	25	30	272	207	20		30		20
	R	30	30	126	212	20	14	26		6	\pm	M	27	20	103	249	21	11	30	11	
	M	20	1522	200	224	21	4	18	2	7	\pm			18	62	201	22	14			
\mp	R	30	30	267	227	20	14	28		19		M	20	18	62	201	22	14	23	16	
	M	27	27	161	198	23	7	30 L		12		M	29	20	157	196	15	8	23	18	
		30	17	44				28	5				15	23	250	221	15	15	26		19
\pm		30	30	106	217	23	14	30	17			M	30	30	159	194		14	30 L	10	9
\pm		20	27	345	177			26	18	7		R	10	30	259	214	19		26		13
	R	10	4	170	196			26	1	15	++	M	30	20	96	191	19	18	30 L	14	
	M	20	24	218	182	20	9	22	6			R	24	30	47	206	22	18	18	6	
	R	27	22	38	184			24		2		M	20	25	159	231			24		20
$\pm+$	\mathbf{R} \mathbf{R}	25	30	129	233	24	8	\|30 L		11	\pm	R	22	18	29	189			20		16
\pm	\mathbf{R} \mathbf{R}	$\begin{array}{r}30 \\ \hline 5\end{array}$	27 $1 / 2$	41 98	203	21	2	18	1	13			20	30	100	217	22	17	24	22	
	M	25	27	216	209	23	15	28		3		R	10	25	213	183	20	8	27		14
**	R	10	2\%	160	204			25		17		M	30	30	247	247	21	6	30 L		11
	R	8	12	219	239			18		17		M	0	3	159	208			26	8	
	R	25	25	190	165	21	16	21				M			65	171			25		
	R	30	27	228	206	23	7	30	2	16			30	27	84	190			28		
1F	R	30	27	157	220	19	15	28		10		M	30	20	51	230	19	11	18	2	3
	R	30	22	335	207	19	14	28		6		M	20	20	159	193	21	13	23		
	M	30	19	301	222	21	10	22	15				30	20	186	218	19	12	21		
	M	25	25	37	201	23	14	27	9			M	30	20	186	218	19	12	21		
	R	20	53	105	199			18	18			\mathbf{R}	30	30	181	170			30 L		13
		25	22	138	181	23	13	24	18			R	30	30	171				27		16
	R	8	リ33	148	213			23		25		M	25	25	180	191	23	11	27	23	
	M	15		303				21	13	14			17	27	267	151	18	16	26	20	m / r ?
	R	30		174	224			30 L		17	+ +		30	30	136	227	15	15	30 L		20
+ +		30	30	180	245			30 L	10			R	27	25	177	194	23	14	27		15
	M	5	2\%	9	203			18	18			M	25	30	244	217	10	17	30	m / r ?	21
	R	30 30	17 30	128 99		24	16	28		21		R	25	27	93	202	21	16	24	m / r ?	17
	M	30 25	30 26	99	183 186	21	17	30 26	5	12		R	30	25	249	200	23	16	27		21
												M	23	20		208			27		22

Scoring Concept Maps

In a 2×2 instructional technique (concept mapping or summarizing) 345 engineering class (section A and B) experiment students in each section were randomly assigned, half to each instructional treatment

At the end of the course, students' achievement was measured on a problem-solving test, an oral examination and other assessments

Scoring Concept Maps

A one way ANOVA was performed looking for correlations with:
\square The Final Exam Score;
\square Midterm Score (first partial written exam);
Number of Problems solved during the course;

Creative Problem Solving;

Pintrich's Motivated Strategies for Learning Questionnaire;

Field Dependent/Field Independent Test;

Number of Concept Maps turned in

Number of Summaries turned in

Scoring Concept Maps

		N	Mean	Std. Deviation	Std. Error	95\% Confidence Interv al for Mean		Minimum	Maximum	
		Lower Bound				Upper Bound				
Creative Problem Solving	Neither		0		.					
	Map	5	1.20	. 447	. 200	. 64	1.76	1	2	
	Resume	2	1.00	. 000	. 000	1.00	1.00	1	1	
	Both	2	1.00	. 000	. 000	1.00	1.00	1	1	
	Total	9	1.11	. 333	. 111	. 85	1.37	1	2	
Midt erm Score	Neither	7	21.57	8.810	3.330	13.42	29.72	5	30	
	Map	32	21.44	8.784	1.553	18.27	24.60	0	30	
	Resume	28	19.89	8.377	1.583	16.64	23.14	0	30	
	Both	14	20.07	9.161	2.448	14.78	25.36	3	30	
	Total	81	20.68	8.580	. 953	18.78	22.58	0	30	
Final Exam Score	Neither	7	21.43	9.863	3.728	12.31	30.55	2	30	
	Map	27	28.00	3.013	. 580	26.81	29.19	20	30	
	Resume	23	26.78	5.931	1.237	24.22	29.35	5	30	
	Both	11	26.45	5.466	1.648	22.78	30.13	15	30	
	Total	68	26.66	5.643	. 684	25.30	28.03	2	30	
Number of Problems Completed and Given to Liberato	Neither	6	78.17	69.718	28.462	5.00	151.33	16	207	
	Map	30	118.97	73.963	13.504	91.35	146.58	11	288	
	Resume	27	96.70	52.585	10.120	75.90	117.51	13	212	
	Both	14	121.07	98.830	26.414	64.01	178.13	14	406	
	Total	77	108.36	72.238	8.232	91.97	124.76	11	406	
Pintrich's Motivated Strategies for Learning Questionnaire	Neither	4	195.50	18.267	9.133	166.43	224.57	176	213	
	Map	28	206.04	15.332	2.897	200.09	211.98	178	237	
	Resume	28	214.18	22.601	4.271	205.41	222.94	176	250	
	Both	11	214.82	22.122	6.670	199.96	229.68	178	246	
		71	210.01	20.021	2.376	205.28	214.75	176	250	
Field Dependence/Field Independence Test	Neither	6	12.67	3.077	1.256	9.44	15.90	10	17	
	Map	24	11.04	3.127	. 638	9.72	12.36	4	17	
	Resume	22	12.73	2.979	. 635	11.41	14.05	4	17	
	Both	11	12.18	3.027	. 913	10.15	14.22	6	16	
	Total	63	11.98	3.077	. 388	11.21	12.76	4	17	
Total Class Score (midterm+f inal+oral exam)	Neither	7	27.29	3.450	1.304	24.09	30.48	23	30	
	Map	32	24.66	3.756	. 664	23.30	26.01	18	30	
	Resume	29	23.90	4.047	. 752	22.36	25.44	18	30	
	Both	14	25.79	4.388	1.173	23.25	28.32	18	30	
	Total	82	24.80	4.004	. 442	23.93	25.68	18	30	
Number of concept maps turned in	Neither	0		
	Map	32	16.1250	5.28388	. 93407	14.2200	18.0300	3.00	25.00	
	Resume	6	1.1667	. 40825	. 16667	. 7382	1.5951	1.00	2.00	
	Both	13	5.5385	4.27425	1.18546	2.9556	8.1214	2.00	15.00	
	Total	51	11.6667	7.57804	1.06114	9.5353	13.7980	1.00	25.00	
Number of resumes turned in	Neither	0		
	Map	2	4.0000	4.24264	3.00000	-34.1186	42.1186	1.00	7.00	
	Resume	29	16.0690	4.65933	. 86522	14.2967	17.8413	1.00	25.00	
	Both	14	13.0000	4.20622	1.12416	10.5714	15.4286	3.00	18.00	
	Total	45	14.5778	5.17638	. 77165	13.0226	16.1329	1.00	25.00	

Scoring Concept Maps

Test of Homogeneity of Variances

	Levene Statistic	df 1	df2	Sig.
Creative Problem Solving	2.370	2	6	. 174
Midterm Score	. 061	3	77	. 980
Final Exam Score	3.054	3	64	. 035
Number of Problems Completed and Given to Liberato	1.754	3	73	. 163
Pintrich's Motivated Strategies for Learning Questionnaire	1.813	3	67	. 153
Field Dependence/Field Independence Test	. 078	3	59	. 972
Total Class Score (midterm+final+oral exam)	. 401	3	78	. 752
Number of concept maps turned in	4.388	2	48	. 018
Number of resumes turned in	. 011	2	42	. 989

Scoring Concept Maps

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Creative Problem Solving	Between Groups	. 089	2	. 044	. 333	. 729
	Within Groups	. 800	6	. 133		
	Total	. 889	8			
Midterm Score	Between Groups	46.458	3	15.486	. 204	. 893
	Within Groups	5843.196	77	75.886		
	Total	5889.654	80			
Final Exam Score	Between Groups	240.866	3	80.289	2.715	. 052
	Within Groups	1892.355	64	29.568		
	Total	2133.221	67			
Number of Problems Completed and Given to Liberato	Between Groups	14775.460	3	4925.153	. 942	. 425
	Within Groups	381818.4	73	5230.388		
	Total	396593.8	76			
Pintrich's Motiv ated Strategies for Learning Questionnaire	Between Groups	2025.278	3	675.093	1.737	. 168
	Within Groups	26033.708	67	388.563		
	Total	28058.986	70			
Field Dependence/Field Independence Test	Between Groups	36.692	3	12.231	1.311	. 279
	Within Groups	550.292	59	9.327		
	Total	586.984	62			
Total Class Score (midterm+f inal+oral exam)	Between Groups	81.184	3	27.061	1.733	. 167
	Within Groups	1217.694	78	15.611		
	Total	1298.878	81			
Number of concept maps turned in	Between Groups	1785.769	2	892.885	39.480	. 000
	Within Groups	1085.564	48	22.616		
	Total	2871.333	50			
Number of resumes turned in	Between Groups	323.116	2	161.558	7.928	. 001
	Within Groups	855.862	42	20.378		
	Total	1178.978	44			

Scoring Concept Maps

Midterm Score

Tukey $\mathrm{HSD}^{\text {a,b }}$

		Subset Receiv ed treatment Ror alpha Re.
condition	N	1
Resume	28	19.89
Both	14	20.07
Map	32	21.44
Neither	7	21.57
Sig.		.956

Means for groups in homogeneous subsets are display ed.
a. Uses Harm onic Mean Sample Size $=14.222$.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Final Exam Score
Tukey HSD ${ }^{\text {a,b }}$

Receiv ed treatment condition	N	Subset for alpha $=.05$	
		1	2
Neither	7	21.43	
Both	11	26.45	26.45
Resume	23	26.78	26.78
Map	27		28.00
Sig.		. 072	. 890

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size $=12.727$.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Ty pe I error lev els are not guaranteed.

Scoring Concept Maps

Jumber of Problems Completed and Given to Liberato

Tukey HSD ${ }^{\text {a,b }}$

Receiv ed treatment condition	N	Subset for alpha $=.05$
		1
Neither	6	78.17
Resume	27	96.70
Map	30	118.97
Both	14	121.07
Sig.		436

Means for groups in homogeneous subsets are display ed.
a. Uses Harmonic Mean Sample Size $=12.967$.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Tintrich's Motivated Strategies for Learning Question naire
Tukey $\mathrm{HSD}^{\mathrm{a}, \mathrm{b}}$

Receiv ed treatment condition		Subset for alpha $=.05$
	N	1
Map	4	195.50
Resume	28	206.04
Both	28	214.18
Sig.	11	214.82

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size $=9.701$.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Ty pe I error lev els are not guaranteed.

Scoring Concept Maps

Field Dependence/Field Independence Test
Tukey HSD ${ }^{\text {a,b }}$

		Subset for alpha $=.05$
Receiv ed treatment condition	N	1
Map	24	11.04
Both	11	12.18
Neither	6	12.67
Resume	22	12.73
Sig.		.548

Means for groups in homogeneous subsets are display ed.
a. Uses Harmonic Mean Sample Size $=11.604$.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Total Class Score (midterm+final+oral exam)
Tukey HSD ${ }^{\text {a,b }}$

		Subset for alpha $=.05$
Receiv ed treatment condition	N	1
Resume	29	23.90
Map	32	24.66
Both	14	25.79
Neither	7	27.29
Sig.		.109

Means for groups in homogeneous subsets are display ed.
a. Uses Harmonic Mean Sample Size $=14.285$.
b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Received treatment condition

Received treatment condition

Gifted

Students

Higher-order cognitive skills

Problem solving is an higher-order cognitive skill

To solve a problem is different from knowing a concept or a formula

Teach Less, Learn More

Hanoi tower

Restrictions

1 The only allowed move is to grab one disk from the top of one peg and drop it on another peg

2 A larger disk can never lie above a smaller disk

The solution

We have 12 small cubes apparently equal

One of them has a weight different from the others

There is also a scale with two

pans

How is it possible, with only 3 weighing, to establish exactly which weights differently from the others and if it weights more or less?

CRYPTARITHMETIC

D O N A L D +
 GERALD=

ROBERT

F. C. Barlett, Thinking, Allen \& Unwin, London, 1958, p. 51

Creativity in Problem Solving

A mixture formed by $\mathrm{NaCl}, \mathrm{NaClO}$ and KClO contains 16.64% of oxygen and 21.52\% of Na

Calculate the percentage of K in the mixture (mxt)

Rules of the game

It is allowed to use only the reasoning

Mathematical crutches such as linear equations or systems of equations are not allowed

The problem

A mixture of $\mathrm{CH}_{4} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{6}$, and $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}$ weighing 44.37 g has the following elemental analysis: $\mathrm{C}=68.74 \%$; $\mathrm{H}=$ 8.905\%; $0=22.355 \%$.

How many grams of $\mathrm{C}_{6} \mathrm{H}_{6}$ are contained in the mixture?

Conclusions

Concept Maps

Concept maps are a way to represent knowledge

They were invented in 1972 by Joseph Novak

LEARNING HOW TO

Joseph D. Novak
D. Bob Gowin

Knowledge is constructed idiosyncratically

... meaning building is an idiosyncratic event, involving not only unique concept and propositional frameworks of the learners, but also varying approaches to learning and varying emotional predispositions. (Novak, 2002, p. 555)

Novak, J. D. (2005). The pursuit of a dream: Education can be improved. In J. J. Mintzes, J. H. Wandersee, J. D. Novak (Eds), Teaching science for understanding: A human constructivism view (pp. 3-28). San Diego, CA: Elsevier

Scoring Concept Maps

"A simple qualitative judgement of students' concept maps is all that some teachers want. ... Scoring was in many respects irrelevant, for we were looking for qualitative changes in the structure of children's concept maps. But because we live in a numbersoriented society, most students and teachers want to score concept maps."
J. D. Novak, D. B. Gowin, Learning how to learn, Cambridge University Press: New York, 1984, p. 97.

Ammonia's synthesis
1-DESULFURAZIONE
L- REFORNING PR'MARO

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{4} \Longleftrightarrow \mathrm{CO}+\mathrm{H}_{2} \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \Leftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \\
& \text { gos } \mathrm{H}_{\mathrm{L}} \mathrm{~N}_{2} \\
& 3 \text { - OSSIDAFIDNE } \\
& \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \Longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \\
& \text { 4-R'MOZIONECOL } \\
& 5 \text { - me tanazione } \\
& \mathrm{CO}+3 \mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{CO}+4 \mathrm{H}_{2} \overrightarrow{\mathrm{E}} \mathrm{CH}+2 \mathrm{H}_{4} \mathrm{O} \\
& \text { 6- COMPRESSIO } \\
& \text { L- sintesi } \\
& 8 \text { - STOCCAGध.。 }
\end{aligned}
$$

1. DESULFURAZIONE

2 REFORHING PRMARIO (GAS MISCELHTO CON WABRE)
3 REFORMING SECONDARIO (REAZIONE CON (AARIA) $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}+2 \mathrm{H}_{2} / 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H} \rho$
4 OSSIDAZIONE $\mathrm{CO} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \longrightarrow$
5 RIMOZIONE CO_{2} (PRR ASSORSMMENTO)
6 METANAZIONE (RIMOZIONE DC COE CO, RMASTI)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftarrows 2 \mathrm{NH}_{3}$
\smile
PRODUZIONE \rightarrow COMPRESSIONE \qquad SINTESI \qquad STOCCAGGIO dei Reogenti

Il PROCESSO DI SINTESI PREVEDE 9 FASI

H

NON SI FORMA SPONTANEAMENTE
PER L'ALTO VALORE DEll'energia DI ATIVAZIONE

BOLLE A $-33^{\circ} \mathrm{C}$

PIRAMIDE A BASE
N IBRIDIZZATO $S p^{3}$

LA SINTESI DELL'AMMONIACA

L'ammoniaca è un gas incolore, più leggero dell'aria, di odore caratteristico, pungente e di effetto lacrimogeno. Il momento dipolare dell'ammoniaca la porta a liquefare facilmente se compressa e la rende molto solubile in acqua grazie allinstaurarsi del legame idrogeno. Gli usi dell'ammoniaca sono innumerevoli: è una sostanza estremamente importante in campo industriale come base per la produzione di fertilizzanti agricoli, fibre sintetiche, materie plastiche e polimeri, come componente di vernici ed esplosivi, come refrigerante nell'industria del freddo, come sblancante nell'industria cartaria... Processo Haber-Bosch

Storicamente il maggior problema legato alla sintesi dell'ammoniaca era rappresentato dalla difficoltà nello scindere il legame triplo che tiene uniti i due atomi di azoto nella molecola N_{2} (energía di dissociazione di $225 \mathrm{Kcal} / \mathrm{mol} /$). All'inizio del secolo scorso fu elaborato il processo Haber-Bosch, un metodo che permette la sintesi industriale dell'ammoniaca su larga scala. L'ammoniaca viene sintetizzata secondo la reazione diretta: $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$ in presenza di catalizzatori (in genere il ferro a partire dalla magnetite), a pressione di 20 MPa e temperatura di $400-500{ }^{\circ} \mathrm{C}$, secondo le seguenti fasi chiave:

- produzione degli elementi puri mediante rimozione dei gas indesiderati
- compressione
- sintesi
- stoccaggio dell'ammoniaca e riciclo dei componenti che non hanno reagito.

Questi passaggi richiedono una serie di operazioni successive:

1. Desulfurazione: per ottenere i reagenti puri occorre partire da un composto che sia ricco di idrogeno: si sceglie allora un idrocarburo naturale (in genere il metano) dal quale vengono eliminate le tracce di zolfo. Lo zolfo infatti reagirebbe con il catalizzatore a base di ferro avvelenandolo con la formazione di solfuri indistruttibili e riducendo cosi in maniera evidente la sua vita residua.
2. Reforming primario: il metano entra in contatto con il vapore acqueo su un catalizzatore a base di nichel a $800^{\circ} \mathrm{C}$ e 30 atm e si innescano due reazioni: quella di reforming $\left(\mathrm{C}_{n} \mathrm{H}_{m}+\mathrm{nH}_{2} \mathrm{O} \Longrightarrow \mathrm{nCO}+(\mathrm{n}+\mathrm{m} / 2) \mathrm{H}_{2}\right)$ e quella di shift ($\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}<->\mathrm{CO}_{2}+\mathrm{H}_{2}$).
3. Reforming secondario: i gas in uscita contengono ancora un 10% di metano. Si introduce allora un'opportuna quantita di aria (che naturalmente contiene azoto) e si fanno awenire le seguenti reazioni:

$\mathrm{CH}_{4}+\mathrm{O}_{2} \leftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$2 \mathrm{H}_{2}+\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}$
L'acqua vapore viene riciclata. I gas che si ottengono contengono $\mathrm{H} 2, \mathrm{~N} 2$ nel rapporto $3: 1$ oltre a $\mathrm{CO}, \mathrm{CO} 2 \mathrm{e}$ H2O

4. Ossidazione del CO a CO2: $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}\left\langle-\mathrm{CO}_{2}+\mathrm{H}_{2}\right.$

5. Rimozione del CO2 per assorbimento su soluzioni alcaline sfruttando Yalta solubilità di CO2 e la bassa di azoto e idrogeno.
6. Metanazione: il gas ottenuto contiene ancora lo $0,3 \%$ di CO e lo $0,1 \%$ di CO2 che rappresentano dei veleni per il catalizzatore e vanno dunque rimossi nella colonna di metanazione mediante l'ausilio di un catalizzatore a base di nichel: $\mathrm{CO}+3 \mathrm{H}_{2} \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Si recupera il calore prodotto da queste reazioni esotermiche e si manda il miscuglio gassoso alla turbo compressione.
7. Compressione passando da 25 a 250 atm , la T aumenta e i gas raffreddano.
8. Sintesi: il reattore opera a $380-400^{\circ} \mathrm{C}$ con il catalizzatore a base di ferro addizionato a vari ossidi che promuovono le reazioni, favoriscono la divisione in atomi e proteggono il catalizzatore dallinvecchiamento. Si ottiene un gas in uscita con al massimo il 20% di NH 3 , che viene raffreddata, condensata e stoccata, I gas non reagiti, invece, vengono rimessi in circolo. L'eccesso di H 2 non si utilizza perché richiede un notevole dimensionamento d'impianto e perché il consistente riciclo comprometterebbe la continuita del processo. All equilibrio da una parte diminuisce la concentrazione del reagenti (r'H2 più dell'N2) dall'altra aumenta quella di NH3 che viene prodotta. La velocità di reazione e quindi la quantità prodotta di ammoniaca dipende da:
le concentrazioni: se si aumenta H 2 (più che N 2) aumenta anche la concentrazione di NH3 fino a nuovo equilibrio
-la temperatura: tanto è piú bassa tanto è migliore la resa
la pressione ed il volume: l'aumento di pressione come la riduzione di volume comportano una maggiore produzione di NH3.

Le condizioni ottimali di sintetizzazione vengono percio definite in base alla velocita di reazione (ossia tonnellate di NH3 prodotte in un'ora), all'energia per tonnellata di NH3 ed alla resa (ossia la percentuale di NH3 prodotta). Se la pressione viene innalzata, la resa incrementa ma aumentano anche I costi e I pericoli potenziali; se la temperatura viene ridotta, l'effetto positivo sulla resa del processo è controbilanciato dalla perdita di velocita reattiva: si potrebbe pensare di ottenere il 100% di ammoniaca, ma nell'arco di anni. Va dunque ricercato un compromesso tra esigenze termodinamiche e cinetiche.
Per ottenere una buona resa, cioe per far si che quasi tutto l'idrogeno e l'azoto si trasformino in ammoniaca, il metodo Haber-Bosch sfrutta il principio dell'equilibrio mobile. Per spostare l'equilibrio della reazione verso destra la reazione viene fatta avvenire:

- ad alte concentrazioni dei reagenti, in modo da aumentare la velocita della reazione diretta
- in un recipiente con spruzzi d'acqua in modo che l'ammoniaca si sciolga facilmente e si sottragga all'equilibrio; la diminuzione della concentrazione di prodotto favorisce infatti la reazione diretta
- ad alte pressioni, perché tutti i componenti all'equilibrio sono allo stato gassoso ed il numero di molecole dei reagenti è doppio rispetto a quello dei prodotti
- a basse temperature perché la reazione è esotermica
- in presenza di un catalizzatore, per aumentare ulteriormente la velocità di reazione

谢谢! Thanks

Problem Solving

A men bought a horse for 6,000 $¥$ and sold it for $7,000 ¥$. Then he bought back again for 8,000 $¥$ and sold it for $9,000 ¥$. How much did he make in the horse business?

We Focus on Inappropriate Aspects of the Problem

A men bought a white horse for \$60 and sold it for \$70

Then he bought a black horse for $\$ 80$ and sold it for $\$ 90$. How much did he make in the horse business?

