《学会学习和思考之科学和科学教育》设计

按照Teach Less, Learn More课程体系的一般设计要求《学会学习和思考》的设计原则,我们做了《学会学习和思考科学和科学教育模块》的设计。

科学和科学教育模块的概念地图
ScienceEdu

课程目标
1、刺激和引导学生思考什么是什么是科学,什么是数学,什么是教育。
2、学生可以有自己的思考和理解,但是大概来说:科学是可计算的可证伪的但是迄今为止没有被证伪的现实世界的心智模型;数学是对事物之间的关系的描述结构的描述;教育这个学科的目的则是使得学生能够学得更好,老师能够教得更好,更容易抓住各个学科的大图景。
3、对科学研究方法有一定了解:观察现象、提出可检验的问题、实验、理论模型的提出、模型的求解、结果的实验检验,模型的理论化。
4、理解科学对于一致性和统一性的追求:理论模型不能相互矛盾,越少的理论模型描述越多的现象,公理化体系。
5、体会批判性思维、系联性思考在数学和物理中的作用和地位。
6、对数学和科学的兴趣,以及用它们来理解世界的兴趣。
7、在学习和思考“科学”和“教育”的过程中实践系联性思考、批判性思维,学会学习和思考。

学习材料:
1、Ted Talks视频:
Alan Kay: A powerful idea about ideas,精心设计的神奇的任务和计算模块帮助学习数学和科学
Andreas Schleicher: Use data to build better schools,能力和潜力能够检测吗,检测结果能够用来促进教学吗?
Aaron O’Connell: Making sense of a visible quantum object,神奇的量子客体
Arthur Benjamin: Teach statistics before calculus!,按照其他人或者教科书来教学吗?
Adam Savage: How simple ideas lead to scientific discoveries 科学里面的简单性
Christopher Emdin: Teach teachers how to create magic,教学本身需要创造性
Chris Anderson: Questions no one knows the answers to,好奇心、科学和教育
Clint Smith: The danger of silence,让每个人都问你所想问,说你所想说
Conrad Wolfram: Teaching kids real math with computers,数学的四个阶段(提出问题、抽象化、计算求解、验证和提高)和当前数学教育以及可能的解决方案
Dan Meyer: Math class needs a makeover,数学教育和粗糙问题的关系
David Deutsch: A new way to explain explanation,科学是什么
Hans Rosling: Let my dataset change your mindset,数学可以很有趣并且改变你的思想
Jared Ficklin: New ways to see music (with color! and fire!),炫酷的科学
Kevin Slavin: How algorithms shape our world,算法改变世界
Ken Robinson: Changing education paradigms,Ken Robinson教育的问题和出路四重奏,创造性和现代教育的目的
Ken Robinson: How to escape education’s death valley
Ken Robinson: Bring on the learning revolution!
Ken Robinson: Do schools kill creativity?
Leonard Susskind: My friend Richard Feynman,Susskind谈Feynman
Liz Coleman: A call to reinvent liberal arts education,什么是真正的通识教育
Marcus du Sautoy: Symmetry, reality’s riddle,世界中的数学,尤其是对称性
Murray Gell-Mann: Beauty, truth and … physics?,物理学的美
Nathan Myhrvold: Cooking as never seen before,做饭和科学研究
Patrick Awuah: How to educate leaders? Liberal arts,通识教育和社会
Peter Doolittle: How your “working memory” makes sense of the world,脑科学如何帮助学习和教学
Roger Antonsen: Math is the hidden secret to understanding the world,关于“理解”和数学,以及数学作为现实的表示
Richard Feynman: Physics is fun to imagine,想象力和物理
Stephen Wolfram: Computing a theory of all knowledge,计算和科学
Tim Brown: Tales of creativity and play,创造力和玩
Uri Alon: Why science demands a leap into the unknown,科学和未知
2、参考书:
Einstein 《物理学的进化》
Feynman《物理定律的特性》
Whitehead《教育的目的》
Novak《学习、创造与使用知识——概念图促进企业和学校的学习变革》
Alder《如何阅读一本书》
Beveridge《科学研究的艺术》
Feynman《QED:光和物质的奇异性》
Cleick《混沌开创新科学》
Popper《科学发现的逻辑》
Bender 《An Introduction to Mathematical Modeling(数学模型引论)》
Gowers《Mathematics: A Very Short Introduction(牛津读本数学)》
吴金闪《概念地图教学和学习方法》
吴金闪《系统科学导论》概论部分

先修课:
《学会学习和思考》技能训练模块,或者其他经过我们认可的概念地图和系联性思考培训班

课程形式和教学安排:
在两周的时间内每周3次每次3小时集中上课,6小时老师授课(分享理念、举例子、讨论、提问、做演示实验、作总结),学生看视频做30分钟口头报告和讨论教学。每周的另外两个晚上同样三小时用于习题课。注意,讨论必须人人参与。

第一次课
老师授课,内容:分享“教的更少,学得更多”的理念,突出系联性思考和批判性思维。学生选择学习材料。通过量子力学和万有引力的例子体会什么是科学,以及科学和数学的关系(用引力的发现、双缝干涉、重物落得快、芝诺佯、比萨斜塔、狭义相对论谬为例,阐述科学中观察、思辨、数学的意义,以及对统一性的追求)。介绍课程基本信息(课堂形式、作业、考试、评分、课程目标、对学生的要求、课程负担、课程网站、习题课、助教等)。

第二次课
老师授课,内容:以量子力学的实验以及实验现象导致的理论上的挑战为例,阐述数学、思辨、想象力,实验在科学和物理学中的意义。另外,老师选择一个科学或者数学的视频,一个教育的视频,分别做一次演示教学。突出第一次课里面的理念以及阵对具体问题做好WHWM问题的讨论。剩余时间,按照第一次课结束之后学生选择的内容和顺序开展报告和讨论。

第三-五次课
按照学生选择的内容和顺序做报告、讨论和点评

第六次课
按照学生选择的内容和顺序做报告、讨论和点评。剩余时间,老师做总结,提示思考这些视频之间的关系,以及这些视频和课程目标——思考什么是科学,什么是数学,什么是好的教学——之间的关系。布置好最后的作业。总结大家表现出来的好的地方和主要问题。

对学生的要求:
熟练的英语听说(课程为全英文授课)、对科学和物理学感兴趣并且有一个开放的头脑还要愿意接受理念和学习难度学习方式上的挑战。

课程主要作业:
看所有的视频,选择其中的一个按照WHWM来做基于视频的关于“什么是科学”、“什么是数学”、“什么是好的教学”或者它们之间的关系的报告,按照“Teach Less, Learn More”的原则完成一门课的课程设计,完成课程报告——总结课程学到的内容并反思。

课程工作量:
上正课时间每天3小时(3*6=18小时),习题课时间每天3小时(4*3=12小时),课后看所有的视频(约20小时)和书(约6小时),为口头报告做准备(基本在习题课时间完成),完成课程设计作业(约10小时),完成课程学习报告(约10小时)。课后思考,相信我肯定会有很多,时间不可计。

注意:课程配有助教,习题课不强制要求参加但是会大大缩短你准备的时间和提高你学习的效果

警告:本课程需要你大量的时间和精力的投入,做主动学习,而不是听听课而已。如果你做不到,或者你对记忆型学习非常满意,请不要来选择这门课程。

每一项具体教学内容的概念地图和理据性:

0、在本课程中,之前的学生在学习过程中整理了各个学习材料的概念地图(在北京师范大学概念地图服务器上http://cmap.systemsci.org),可供参考。另外,理据性部分仅仅举了两个例子。实际上,所有学习内容的理据性都应该明确写下来。后续会再补充。

1、为什么采用教师分享理念举例和学生讲解同学老师讨论的相结合的方式来授课

物理学是一个比较成熟的学科,有自己的理论体系、典型思维方式。因此,用典型的例子来阐述和让学生体会什么是物理学(典型研究对象、典型研究问题、典型思考方式、典型分析方法)以及物理学和科学的联系是非常有必要的。在这一点上,必须是老师这个先行组织者来带领大家一起完成。

此外,做中学(Learning by doing),教中学(Learning by teaching),才能让学生对学习材料有更好的主动的体验和理解,而不是被动听课。

于是,老师的责任就是引领道路和引领思考,分享完理念之后,做一个或者多个表现出来这些理念和思考的演示教学,然后在点评中进一步体现理念。同时,学生口头报告中暴露出来的问题会比老师专门设计出来的问题和场景更好地成为大家讨论学习的材料。

当然,两种方式的比例需要按照学生的情况来考量。在可能的情况下,给学生更多的锻炼机会更好。

2、为什么教“Teach Less, Learn More”

很多的老师的教学行为是按照其他人怎么教或者某一本或者几本教科书来进行的。来很多时候,没有深入地思考过是否每一个教学内容都是有必要的,为了实现某一个目的并且这个目的有利于培养真正的提出问题、创造知识或者创造性地使用知识的人的。随着我们所积累的知识的量的增加和技术的进步,单纯为了存储知识的学习基本上已经没有必要了。进一步,如果什么东西都要按部就班来学,那么,在我们真的能够创造知识之前我们就必须花费越来越多的时间来学习。有没有什么办法,能够用尽量少的具体知识作为学习内容可是学习得到的对这个学科的理解又能够比较深刻,明白这个学科的大图景:典型问题、典型思考方式和典型分析方法呢?有,把握住这个学科的核心概念体系——概念、举例以及它们之间的关系,然后选择能够体现大图景的概念、举例和它们之间的关系来作为学习内容,把非核心和基础的内容留给学生自学(例如通过布置作业)。

这样的一个体系就是我们称之为“教的更少,学得更多”的体系。它的主要教学目标是学会这个学科的大图景——典型问题、典型思考方式和典型分析方法还有核心概念体系,让学生能够进一步自学——所以也学会使用系联性思考和批判性思维,愿意进一步自学——所以要用教师自己对这个学科的情感来感染学生。为了实现这个目标,对于一门课程,老师需要明确写下来:教学的目标(按照上面的一般目标来细化),整体知识结构的概念地图,选择的核心概念和典型例子的子概念地图,每一项教学内容的理据性,教学过程中一定要问好WHWM问题促进学习者对大图景和小问题的理解。

3、为什么要把科学教育和科学放在一起来学习?

没有深入思考和理解具体学科,是完全做不到好的教学的。好的教学一定是体现学科大图景,围绕少量核心概念和核心概念之间的关系,用好例子展开的。这个就要求对学科本身有相当的造诣,并且掌握了“以概念地图为基础的理解型教学方法”,能够做到“Teach Less, Learn More”。